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Abstract

One of the fundamental cognitive abilities of humans is to quickly resolve uncer-
tainty by generating hypotheses and testing them via active trials. Encountering a
novel phenomenon accompanied by ambiguous cause-effect relationships, humans
make hypotheses against data, conduct inferences from observation, test their the-
ory via experimentation, and correct the proposition if inconsistency arises. These
iterative processes persist until the underlying mechanism becomes clear. In this
work, we devise the @RIVRE (pronounced as ivory) environment for evaluating
artificial agents’ reasoning ability under uncertainty. @R IVRE is an interactive
environment featuring rich scenarios centered around Blicket detection. Agents in
@ IVRE are placed into environments with various ambiguous action-effect pairs
and asked to determine each object’s role. They are encouraged to propose effective
and efficient experiments to validate their hypotheses based on observations and
actively gather new information. The game ends when all uncertainties are resolved
or the maximum number of trials is consumed. By evaluating modern artificial
agents in @ IVRE, we notice a clear failure of today’s learning methods compared
to humans. Such inefficacy in interactive reasoning ability under uncertainty calls
for future research in building human-like intelligence.

1 Introduction

Situated in a room, you rarely have a clear idea of what specific factor caused a sudden lights-out. You
might begin to check the light switch, the main circuit breaker, or the light bulb itself. With a series
of experiments, you can finally realize the actual cause. This is a canonical example of reasoning and
resolving uncertainty through interaction: when encountering a novel scenario, humans typically lack
sufficient information and knowledge to arrive at a definitive conclusion based solely on the initial
observation. Instead, we formulate hypotheses, subject them to testing, and utilize newly gathered
data to address the preceding uncertainty in our reasoning process (Halpern, 2017).
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Navigating uncertainty through reasoning is a distinctive feature of human intellect. This journey, from
Hume’s explorations of causation (Hume, 1896) to contemporary scientific breakthroughs, illustrates
humanity’s reliance on formulating hypotheses to actively probe and gather fresh evidence, thereby
diminishing ambiguity and carving certainties out of the realms of the unknown (White, 1990; Shanks,
1985). In the current landscape, the field of machine learning has witnessed remarkable advancements,
spanning domains from comprehending natural language to deciphering visual stimuli. Yet, the
aspiration to emulate human-like reasoning within machines remains an unfulfilled odyssey. The
existing capabilities of artificial systems notably diverge from the human, even infantile, cognitive
processes used to interpret our surroundings, deduce causal connections, and pioneer scientific
discoveries (Gopnik, 1996).

In this work, we study the problem of visual rea-
soning under uncertainty, which tasks an agent
to design new experiments that test hypotheses
and discern each variable’s causal role. In pur-
suit of this goal, we introduce the Interactive Vi-
sual Reasoning (@& IVRE) (pronounced as ivory)
environment as an interactive testbed. @aIVRE
is grounded on the Blicket detection setup (Gop-
nik and Sobel, 2000; Sobel et al., 2004; Sobel
and Kirkham, 2006; Zhang et al., 2021a), ini-
tially designed to evaluate children’s induction
ability via passive observation and active tri-

als. In a series of experiments, children were
presented with a Blicket machine, which has a
very intuitive working mechanism: whenever a
Blicket is put on top of it, the device becomes
activated, lighting up and playing music. Par-
ticipants were shown a series of experiments to
demonstrate the Blicketness of a set of objects.
They were then encouraged to engage in ex-
ploratory play with the objects and the machine
to determine the Blicketness of each object. Crit-

Figure 1: Children resolve uncertainty through ex-
ploratory play with the Blicket machine and objects.
In the beginning, the child is uncertain about which ob-
ject can activate the machine from the initial context
panel that contains an active machine. S/he procedurally
designs new experiments to test hypotheses. When a new
trial indicates that the machine remains activated when
only the yellow cylinder is present, the child knows that
the cylinder alone can activate the machine, confirming
its Blicketness. However, the red cube requires an addi-
tional test for verification.

ically, during the exploratory process, children

generated and validated different hypotheses un-

til they were confident about the properties of each object (Gopnik and Sobel, 2000; Sobel and
Kirkham, 2006; Sobel et al., 2004; Walker and Gopnik, 2014) and can even rationally infer causes
of failed actions when they are as young as 16-month old (Gweon and Schulz, 2011). Fig. 1 shows
an illustrative example of how a participant resolves uncertainty when unraveling how the Blicket
machine works and which object is a Blicket.

@R IVRE is built following a similar interactive setting in the original Blicket experiments. Specifically,
we are inspired by recent work in building synthetic reasoning benchmarks (Johnson et al., 2017;
Edmonds et al., 2018; Zhang et al., 2019a; Yi et al., 2019; Girdhar and Ramanan, 2019; Zhang
et al., 2021a; Xie et al., 2021; Li et al., 2022, 2023; Jiang et al., 2023; Xu et al., 2023) and adopt
the CLEVR (Johnson et al., 2017) universe in creating the interactive environment. Following the
recent work of ACRE (Zhang et al., 2021a) for causal reasoning, we borrow the object appearances
and the Blicket machine setup. In particular, an agent is presented with a few observations of objects
on Blicket machines that are either activated or not (referred to as context) at the beginning of each
@R IVRE episode. Information for identifying which subset of objects are Blickets is incomplete from
the context only, thereby introducing uncertainty. To determine the Blicketness of each object, an
agent is tasked to propose trial experiments that could be carried out in each of the upcoming time
steps (referred to as trials), and in the meantime, updating its belief over which object is an actual
Blicket. The correctness of its belief at each step serves as the motivating signal for the agent, who
additionally receives a constant penalty for every unsuccessful trial to encourage efficiency.

Serving as a testbed, @ IVRE evaluate interactive reasoning under uncertainty of today’s state-of-
the-art artificial agents (Schmidhuber, 2015; Lillicrap et al., 2015; Fujimoto et al., 2018; Mnih
et al., 2015; Sutton and Barto, 2018; OpenAl, 2023). Not only do we benchmark Reinforcement
Learning (RL) algorithms with visual input from the rendering engine, but also with the ground-truth



Table 1: Comparison between €RIVRE and other related visual reasoning benchmarks in terms of tasks
(classification, visual question answering, and game), sizes (number of scenarios), and input formats. g8 IVRE
introduces a spatial-temporal-causal reasoning task, which allows intervention and belief update. It aims at
few-shot uncertainty resolution with fast experimentation and reasoning.

Benchmarks Task Size Format Temporal Interactive Uncertainty Few-shot
CLEVR (Johnson et al., 2017) vqa 100k image X X X X
CLEVRER (Yi et al., 2019) vqa 20k video v X X X
CATER (Girdhar and Ramanan, 2019) cls 5.5k video v X X X
CURI (Vedantam et al., 2021) cls 990k image v X v v
ACRE (Zhang et al., 2021a) cls 30k image v X v v
Alchemy (Wang et al., 2021) game - image/symbol v v v X
@R IVRE (Ours) game - image/symbol v v v v

symbolic representation of the environment, including some additional study with Large Language
Models (LLMs). We note that the environment is challenging enough for agents with even the
symbolic representation, and visual complexity poses additional challenges. Further comparing the
performance of the heuristic algorithms and that of the RL agents, the prominent failure of today’s
artificial agents in resolving uncertainty becomes even more evident, calling for future investigation
into building intelligence that can learn and reason like people (Lake et al., 2017; Zhu et al., 2020).

To sum up, our work makes the following contributions:

* We present the @R IVRE platform, a unique environment tailored for assessing the proficiency of
artificial agents in dynamically resolving uncertainty through interaction. What sets @a IVRE apart
is the dual challenges it imposes: demanding both logical reasoning and the creation of effective
strategies to mitigate uncertainty.

* The @ IVRE setup was meticulously designed to maintain a balance between perceptual simplicity
and a rich array of visual elements and situational tasks. This environment ushers in a novel
paradigm of interactive reasoning in the face of uncertainty, compelling agents to engage directly
with their conjectures by formulating and executing new experimental trials.

* Utilizing the @R IVRE framework, we evaluated a spectrum of agents on their ability to navigate
the complex problem of interactive reasoning under uncertain conditions. Additionally, our human
studies confirmed the human aptitude for managing such tasks. Our observations underscore that
(). visual complexity is not the core difficulty in this task, which echos our design principle
to minimize visual complexity, (ii). the art of uncertainty reduction within €8 IVRE hinges on
advanced reasoning skills and the strategic implementation of active trials, and (iii). contemporary
learning agents are yet to master uncertainty reduction through interactive methods.

2 Related Work

Visual Reasoning A range of visual reasoning and vision-language understanding tasks has been
proposed recently. On the basis of a series of Visual Question Answering (VQA) benchmarks (Antol
et al., 2015; Krishna et al., 2017; Tapaswi et al., 2016; Zhu et al., 2016), Johnson et al. (2017) use
synthetic images depicting simple 3D shapes to scrutinize a suite of VQA models and discover
their potential weaknesses. From a causal and physical reasoning perspective, the video dataset
of CLEVRER was introduced by Yi et al. (2019) to investigate the performance of state-of-the-
art (SOTA) models on learning complex spatial-temporal-causal structures from interacting objects
in a scene. At a more abstract level, model performance in human Intelligence Quotient (IQ) tests has
been studied; Barrett et al. (2018) and Zhang et al. (2019a) proposed datasets inspired by the Raven’s
Progressive Matrices (RPM) (Carpenter et al., 1990; Raven and Court, 1938), featuring reasoning
on the hidden spatial-temporal transformation from a limited number of context panels. Approaches
for this abstract reasoning task range from the neural end towards neuro-symbolism over the years
(Santoro et al., 2017; Hill et al., 2018; Zhang et al., 2019b, 2021b; Wang et al., 2019; Spratley et al.,
2020; Zheng et al., 2019; Wu et al., 2020). Inspired by Blicket detection and the problem of causal
induction (Gopnik and Sobel, 2000; Gopnik et al., 2001), the ACRE dataset (Zhang et al., 2021a) was
presented as a way to systematically evaluate current vision systems’ capability in causal induction.
It is worth noting a visual reasoning method based on object-centric representation and self-attention
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Figure 2: A simple example episode in the @2 IVRE environment. At the beginning of the episode, an agent
is given a set of context panels (4 in an actual instance) as an introduction to the problem. Next, the agent is
motivated to determine which object is a Blicket by proposing new experiments to validate its hypothesis and
update its belief. The agent will receive a high reward if all Blickets have been found out.

(Ding et al., 2021) has obtained notable performance on various visual reasoning domains, including
CLEVRER (Yi et al,, 2019), CATER (Girdhar and Ramanan, 2019), and ACRE (Zhang et al., 2021a),
with the help of unsupervised object segmentation algorithms (Burgess et al., 2019). The inclusion of
embodied versions in visual reasoning tasks also marks a significant advancement in developing Al
systems that can reason within intricate and realistic environments. Some other works (Beattie et al.,
2016; Wayne et al., 2018) incorporate tasks designed to evaluate the reasoning capabilities of RL
agents. Hill et al. (2020) demonstrates that RL agents have the ability to conceptualize new ideas
within 3D settings.

While the proposed €& IVRE environment is based on the Blicket setup and visually similar to the
ACRE dataset, the new interactive environment emphasizes a drastically different problem: apart from
figuring out the hidden causal factors, the agent is also tasked with making maximally meaningful
exploration from an initial setup of high uncertainty and aggregating the collected information to
update its belief and guide its next decision.

Few-Shot Reasoning Several notable works have contributed to advancing agents’ reasoning
abilities in few-shot scenarios, where agents learn from a small number of examples or instances to
solve problems. Popular works include Omniglot (Lake et al., 2015, 2019) and RAVEN (Zhang et al.,
2019a). Additionally, other studies have explored the topic of uncertainty in few-shot settings. In
particular, Vedantam et al. (2021) introduces a dataset that highlights compositional reasoning under
uncertainty; Zhang et al. (2021a) proposes the task of causal induction, which requires a model to
determine if a factor resulted in a subsequent effect; Jiang et al. (2023) introduces a benchmark to
assess how machines resolve referential uncertainty when learning new words. Our environment goes
beyond simple passive reasoning by allowing fast trials to reduce uncertainty.

@ IVRE differs from previous works by introducing uncertainty into visual reasoning. Tab. 1 com-
pares @R IVRE with existing dataset benchmarks. As an interactive environment, @x IVRE enables
agents to gain information actively from the environment to test and revise their hypotheses, fun-
damentally distinctive from classic visual reasoning tasks such as CLEVR. The causal structure
in @rIVRE is rich and easy for intervention, going beyond the traditional paradigm of passive ob-
servation and reasoning. In addition, @R IVRE also focuses on active exploration and efficiency in
reasoning. Notably, while adopting a similar setting with the Blicket experiment in ACRE, @R IVRE is
more than interactive ACRE: by abstracting out the perceptual complexity, @k IVRE places emphasis
on the under-explored topic of uncertainty resolution. An agent needs to induce the hidden relations
based on observation and, more importantly, propose interventional trials to collect new information
efficiently to test its hypothesis and disentangle confounders in complex phenomena.

3 The €2 IVRE Environment

We build the proposed @ IVRE under the OpenAl Gym framework (Brockman et al., 2016). As
a visual-based interactive platform, @@ IVRE aims at fostering an agent to understand the visual
information collected and disentangle the causal factors underlying the observation by actively
proposing new experiments to demystify the phenomenon, validate its hypothesis, and correct its
belief. Following earlier works, the visual domain of @r IVRE is consistent with the CLEVR (Johnson
etal., 2017) and ACRE (Zhang et al., 2021a) universe, where a Blicket machine sits on a tabletop.
Lying upon the Blicket machine are objects with potential Blicketness, which can be inferred from
the observation of the machine’s activation pattern across frames. The objects’ attributes vary in



shape (cube, sphere, or cylinder), material (metal or rubber), and color (gray, red, blue, green, brown,
cyan, purple, or yellow). We signal activation of the Blicket machine by lighting it up.

An agent in @R IVRE is tasked with determining which objects are Blickets. At the start of each
episode, the agent is presented with several initial observations of various object combinations
(henceforth referred to as context). The context alone is insufficient to solve Blicketness for all
objects. Hence, in each following step (henceforth referred to as trials), the agent proposes a new
experiment of a specific object combination and updates its belief of Blicketness based on the outcome
of experiments.

An episode will be terminated if the agent works out the Blicketness of all objects or consumes all
T = 10 time steps. The agent is, therefore, rewarded at each step based on the correctness of its belief,
and as a way to encourage efficient exploration, penalized every step it fails the problem. Please refer
to Fig. 2 for a simplified example of an episode in the @@ IVRE environment.

In the following, we discuss the designs in detail.

Context To instantiate a problem at each episode, we first sample 9 unique shape-material-color
combinations from the pool to create the objects, the Blicketness of which is for the agent to solve.
Next, we randomly assign n objects (1 < n < 4) to be Blickets. To build a context panel, we
randomly pick m objects (1 < m < 4) out of the 9 and place them onto a Blicket machine. The status
of the Blicket machine can be determined by checking if the m sampled objects contain a Blicket. We
repeat the sampling process 4 times to create a set of context panels as the agent’s initial observation.

Trial After observing the context panels, the agent forms an initial belief of Blicketness over all the
objects. At each time step ¢ that follows, the agent observes the outcome of the previous experiment,
updates its own belief about the Blickets, and, if uncertainty about object(s) remains, proposes a new
experiment to test. There is no limit to the number of objects when proposing trials. This process
resembles the active hypothesis testing process and is crucial for discerning related variables.

Observation Space We consider two forms of observation for @ IVRE: a symbolic version and a
pixel version. For the symbol-input version, we use a binary vector to describe the state of the scene,
where the first 9 entries represent if the object of interest is present or not and the last entry if the
Blicket machine is on or off. For the pixel-input version, we feed the scene description into Blender
EEVEE engine (Blender Online Community, 2016) to render images in real-time. For efficiency, we
render images of shape 160 x 120. Notably, the pixel version adds more confounding variables to the
problem, whereas a well-defined symbolic version drastically simplifies it. For the pixel-input version,
we hypothesize that an agent could handle uncertainty from many possible levels of abstraction; they
could be defined on an attribute basis (e.g., color, shape, material), an object basis, or on a group
basis. We indicate the total number of Blickets for agents in both environments to improve the naive
try-one-by-one strategy.

Action Space @R IVRE action space is composed of two sub-components: the trial and the belief.
The trial component represents the objects selected to perform experiments on in the next trial step
for resolving the uncertainty. The belief component denotes the agent’s belief of Blicketness after
analyzing all experimental results up to the current time step. For agents in @RI VRE, we soften the
binary sub-spaces into continuous values in [0, 1], interpreting each value in the trial sub-space as
the probability of selecting that object and that in the belief sub-space as the probability of being a
Blicket.

Reward The reward is based on the correctness of its belief and the efficiency of its trial. If the
agent figures out the Blicketness for every object within the maximum 7' time steps, it will receive
a constant reward of 20. For every step that fails the guess, a penalty of —1 will be sent. We also
introduce an auxiliary reward based on the partial correctness of its belief. Specifically, at each time
step, we first calculate an oracle Blicketness belief based on all the experimental results the agent has
observed via search. Next, we use the negative Jensen-Shannon Distance (JSD) between the current
and oracle beliefs as the motivating signal. Note that as negative JSD is bounded by [—1, 0], the
reward an agent can receive ranges from —20 (the agent completely fails at each step and consumes
all time) to 20 (the agent instantly solves the problem after observing the context).



4 Benchmarking €x IVRE

We detail two groups of models for the proposed @aIVRE environment: (i). heuristic methods and
(i1). RL methods under the Partially Observable Markov Decision Process (POMDP) formulation.
Additionally, we collect human performance with a web-based €& IVRE environment.

4.1 Heuristic Methods

We consider seven heuristic agents running on the symbol-input version of the @R IVRE environment.

Random Agent The simple random agent only randomly samples belief and the next trial from a
uniform distribution without processing any observation. As a result, neither does the agent generate
reasonable belief nor propose any meaningful trials during the interaction.

Bayes Agent Numerous studies have shown that children and adults propose hypotheses to explain
causal relationships using Bayesian models (Lucas and Griffiths, 2010; Gopnik, 1996; Gopnik and
Sobel, 2000; Gopnik et al., 2001). Therefore, we propose to use a Bayes agent for evaluation as well.
Specifically, we implement a Naive Bayes classifier based on the Bernoulli distribution. The classifier
predicts the Blicketness for each object via the Bayes’ rule using the observation collected up to this
time step as training data. The agent then proposes a random trial to gather more information.

Naive Agent Cook et al. (201 1) reveal that, to learn a latent causal structure, children without formal
science education tend to perform actions that isolate relevant variables in a naive strategy. Following
this empirical observation, we implement a naive agent whose trial experiment only contains one
object. In the next round, the agent updates its belief for the Blicketness of the object with certainty,
and randomly selects an object that has not been tested. Though feasible and certain, this policy
results in low efficiency in trials.

NOTEARS NOTEARS (Zheng et al., 2018, 2020) is a score-based continuous optimization algo-
rithm that aims at structure learning of directed acyclic graphs. It can also be used for deriving causal
relations (Zhu et al., 2019). Following Zhang et al. (2021a), the causal relation learning process
in @R IVRE can be formulated as an optimization problem and thus learned by NOTEARS. In our
NOTEARS implementation, we use a naive policy to propose trials and a nonlinear NOTEARS using
MLP to calculate the belief.

Search-based Random Agent We also propose a search-based random agent. The agent is non-
parametric in the sense that the agent assumes knowledge of the ground-truth disjunctive causal
overhypothesis and, at each time step, searches for all possible Blicket assignments that are consistent
with observation up to now. The agent then computes the frequency of the appearance of an object in
the set of possible Blicket assignments and randomly selects a set of objects to test.

Search-based Naive Agent The search-based naive agent follows the same design as the search-
based random agent in that the prior belief probability is computed in the same way. This naive
version uses the probability distribution to select objects for the next round. Specifically, we apply
the naive strategy and only select the object with the highest uncertainty to test.

LLMs We also test contemporary LLMs on symbol-input @RIVRE with GPT-3.5
(gpt—-3.5-turbo) (Brown et al., 2020; Ouyang et al., 2022) and GPT-4 (gpt-4-0314)
(OpenAl, 2023). As studied in previous research, LLMs demonstrate the ability to understand and
reason with the context in which they operate. Specifically, we tame the LLMs using a specific
template in a multi-round question-answering format. Please refer to Appx. D for additional details.

4.2 Reinforcement Learning Methods

The €@*IVRE environment can be modeled as a POMDP for RL training. Formally, the POMDP
problem is a tuple (S, A, T, R,Q, O,~), where S, A, T, R, Q) are the state space, the action space,
the transition probability, the reward function, and the observation space, respectively. Note that the
state space covers the ground-truth belief up to each time step ¢. The action space, the observation
space, and the reward function have been discussed in Sec. 3. O is the observation generator for each
state-action pair (s, a) and -y is the discount factor (set to 0.99). As mentioned in Sec. 3, we consider
two versions of the observation space: the symbol-input version and the pixel-input version. For the
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Figure 3: The general RL architecture for benchmarking @ IVRE. The architecture follows the actor-critic
design; both the policy and value functions are represented with neural networks. We use a shared CNN encoder
to extract visual features for the pixel-input version of the environment depicted here. The symbol-input version
differs from the pixel version in providing a binary vector description processed by an MLP.

POMDP formulation of the RL algorithms, we use a recurrent agent for learning, as the underlying
state is not directly observable and has to be inferred from the history of the observation.

The POMDP could also be transformed into an Markov Decision Process (MDP) if we know the
underlying state at each time step. Therefore, we also consider a feed-forward architecture for this
formulation: if one regards the belief sub-space from the agent’s output as the true state space, we
can use the belief from the previous time step and the new observation to propose a new trial and
update the belief. Note that despite a feed-forward architecture being used, the entire process is still
recurrent as the belief state’s dependency is traced back to the history observation. See Fig. 3 for
a graphical illustration of the general RL architecture we use for benchmarking 4a IVRE. Here we
only depict the pixel-input version, where the agent architecture is a CNN encoder module for visual
perception and a feed-forward module that uses the agent’s belief as an approximate.

As the action space has been softened, we consider popular continuous RL methods for evaluation.
Specifically, we benchmark Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), Twin
Delayed Deep Deterministic Policy Gradient (TD-3) (Fujimoto et al., 2018), and Proximal Policy
Optimization (PPO) (Schulman et al., 2017). We also test an agent that incorporates NOTEARS
(Zheng et al., 2018, 2020) as its reasoning component. Please refer to Appx. B for details.

DDPG DDPG is designed based on the successful Deep Q-Learning (Mnih et al., 2015) and
extended to the continuous action domain. For the symbol-input DDPG model, we use two Multi-
Layer Perceptron (MLP) with three hidden layers of width 512 and ReLU activation as the actor
and critic network, respectively. For the pixel-input version, we use an ImageNet (Deng et al., 2009)
pre-trained ResNet-18 (He et al., 2016) to process image panels and concatenate it with the agent’s
belief from the previous time step as input to the actor and critic network. We add an additional MLP
and an LSTM layer with 384 units to process the raw history observation in the recurrent agent.

TD-3 Compared to DDPG, TD-3 notices the problem of the overestimated value function in the
actor-critic setting and suggests a new mechanism in mitigating this effect. In our TD-3 implemen-
tation, we use a backbone similar to DDPG: three MLP with three hidden layers of width 512 and
ReLU activation are used for the actor and two critic networks, respectively. A similar adaptation in
the DDPG setup is made for the recurrent agent in the TD-3 implementation.

PPO InRL tasks, PPO is widely used as an online learning baseline. It is based on policy optimiza-
tion methods and generally has trust-region methods’ stability and reliability. Similar to the two RL
agents mentioned above, we adopted the same three-layer MLP for its backbone.

4.3 Human Baseline

We recruited 54 participants from Peking University to take part in the study, which was conducted
through a web-based @ IVRE platform (see Fig. A8). Each participant was compensated with course
credits upon the completion of an episode. The episodes were randomly allocated to the participants,
who were then tasked with solving the @*IVRE challenge in a maximum of 10 steps, without any
time restrictions.



Table 2: Left: Performance of heuristic models on the symbol-input version of €2 IVRE environment. Right:
Performance of RL models and humans on the € IVRE environment. We report two evaluation metrics:
the problem-solving accuracy, denoted as Acc, and the total reward, denoted as R. The context column records
results when the agent only observes the context panels, whereas the episode column after the entire episode (FF:
feed-forward, Re: recurrent, V: pixel-input).

Model Context Episode Model Context Episode
Acc R Acc R Acc R Acc R

Random 0.86% -542 1.87% -14.14 DDPG-FF 2247% -0.17 3247%  -3.70
Bayes 15.60% -2.98 43.03% -3.78 DDPG-Re 13.55% -2.03 46.03% -0.29
Naive 350% -391 43.62%  -1.69 TD-3-Re  12.57% -2.40 36.83% -2.71
NOTEARS 9.10% -4.66 12.70% -13.02 TD-3-FF  2191% -0.42 30.05% -4.48
Search-Naive 1.51% -3.68 83.80% 9.39 PPO 6.87%  -3.87 2856% -5.85
Search-Random  1.80%  -3.62 34.15% -1.87 DDPG-V 035% -5.02 072% -13.40
GPT-3.5 3% -5.91 11% -13.39 TD-3-V 027% -5.04 031% -13.51
GPT-4 10% -3.36 26% -7.88 Human 33.33% 5.01 98.15% 12.70

5 Experiment

5.1 Experimental Setup

We run experiments on the @ IVRE environment with the agents and their aforementioned variants.
For evaluation metrics, we report the agent’s average reward together with problem-solving accuracy
over 10* random test episodes (except LLMs 10%). The average reward measures how the model
performs in terms of reasoning and trial efficiency, while the problem-solving accuracy is computed
by counting the number of episodes where an agent correctly figures out Blicketness for all objects.
Apart from the final results after finishing an entire episode, we also evaluate how the agent performs
after observing the initial context panels only: a metric on how the model understands the problem
without any trials.

5.2 Performance of Agents

Heuristic Agents Tab. 2 shows the performance of the heuristic agents in the proposed @R IVRE
environment. In general, we note that the more information collected, the better the agents resolve the
uncertainty: the low accuracy after the context panels also verifies that additional trials are necessary
for solving the entire problem. The Random agent fails in this task unsurprisingly, while the Search-
Naive agent reaches more closely to the human performance. The comparison among the random
agent, the naive agent, and their search-based variants indicates that both the reasoning component
and the exploration strategy are beneficial for a symbolic approach. Without the reasoning component,
the naive agent does not build a reliable belief over which object is more likely to be a Blicket;
without the exploration strategy, an agent only randomly collects new experiments, doing little help
in demystifying the phenomenon. LLM agents, equipped with priors learned from large-scale text
corpora, exhibit a notable level of reasoning ability to reduce uncertainty, yet still far from human
performance.

Symbol-Input RL Agents Tab. 2 summarises the performance of symbol-input RL agents. RL
agents performed significantly better than the Random agent, where DDPG-Re gets the highest
reward. Recurrent agents generally perform better than feed-forward agents, indicating that history
observation and trials play a role in generating valid hypotheses and proposing new trials. One
interesting observation from the performance of these RL agents is that they generally propose very
inefficient trials: the final reward decreases as time goes by. However, it becomes more likely for an
agent to stumble on a solution by chance.

Pixel-Input RL Agents We consider DDPG and TD-3 with the pixel-input experiments. As shown
in Tab. 2, all the models tested in the pixel-input version of @aIVRE catastrophically fail with random-
level problem-solving accuracy and total reward. Surprisingly, while their rewards are slightly higher
than the random agent’s, their problem-solving accuracy is even worse, let alone the conspicuously
large gap from the performance under the symbol-input circumstance. We carefully checked the
output of these agents and found that belief and trial predicted by agents oscillated around 0.5,
indicating that they had difficulty learning to understand the #a IVRE environment from pixel-level
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Figure 4: Left and Middle: Distribution of the steps an agent takes to successfully solve an @ IVRE episode.
Left: Search-based Naive agent. Middle: DDPG-Re agent. Right: Box plot of the number of objects the
DDPG-Re agent proposes at each time step.

input. Our results suggest that current models should be further improved in representation learning
to help interactive reasoning under uncertainty.

Comparison Comparing experimental results in heuristic agents, symbol-input RL agents, and
pixel-input RL agents, we note that uncertainty reduction is challenging not only in reasoning but
also in proposing valid trials. Our heuristic results reveal that the lack of either capability can lead
to failure in tasks like @aIVRE, which are quite common in the real world. For almost all of the
RL-learned policies, they have difficulty effectively proposing meaningful experiments to validate
and update their belief. The heuristic method with the best performance is designed based on human
prior and equipped with a fixed and naive policy, far from the talent shown by human beings when
performing this task. Even LLMs with vast prior knowledge still fall short.

5.3 Analysis

The naive trial policy achieves significantly better results compared to the random trial policy with
oracle belief. Several factors contribute to the performance of the Search-Naive agent. First, the agent
operates under the assumption that the Blicket machine functions as an OR machine (the disjointive
causal overhypothesis), meaning it will activate if at least one object is a Blicket. Second, although
not entirely accurate, the agent uses correlation as a proxy for causality, which may yield partially
correct outcomes in certain situations. Third, the agent tests for “Blicketness” one object at a time,
which, while not the most efficient approach, helps to isolate other confounding variables. These
findings suggest that solving the @*IVRE problem requires more than random testing; it calls for
thoughtful selection of trials.

Moreover, the visual complexity adds additional challenges to the problem for agents, whereas
humans are used to reasoning and refining their hypotheses from visual stimuli. Looking into the
failure in the pixel-input agents, we hypothesize that causal representation learning could mitigate its
learning inefficacy: not only do we need features to distinguish between different experiments and
those that support an in-depth understanding of the environment.

Analyzing the patterns and outcomes of human participants, we observe that they exhibit strong
capabilities in reasoning and exploration. They employ a versatile approach to experimentation and
demonstrate effective reasoning even within constrained scenarios. For further insights, refer to the
Appx. E detailed set of examples provided.

Distribution of Steps The symbolic version of @ IVRE is considered a diagnostic tool and an
upper bound for pixel @aIVRE. With pixel-input RL agents reaching only random-level performance,
we analyze the best heuristic model (i.e., Search-based Naive agent) and the best symbol-input RL
model (i.e., DDPG-Re). Fig. 4 shows the distribution of steps the agents take to successfully solve a
problem and the number of objects proposed at each time step in the 10* random test episodes. We
also plot the number of objects the DDPG-Re agent proposes at each time step. The search-based
method makes reasonable trials with the naive strategy at each step, and as the information collected
amounts, more episodes are solved. RL agents also have learned specific exploration strategies to
reduce uncertainty, although not as perfect as humans: more flexible and diverse actions are observed
in Steps 5-7, and more episodes are solved in these steps. On the other hand, DDPG-Re agent might
have learned data bias as it directly solves a certain number of episodes without interaction. For its
trial policy, the DDPG-Re agent consistently selects around 3 to 5 objects to test at earlier steps in
the process and picks fewer objects towards the end. Combining the analysis, we find the agent in



the early steps learns to use a mixed strategy even less effectively than the naive trial, showing very
limited ability in actively reasoning under uncertainty.

6 Conclusion and Discussion

In this work, we introduce @R IVRE, an interactive testbed for evaluating artificial agents’ reasoning
ability under uncertainty. Inspired by the theoretical proposition and the empirical observation
of infants, the newly introduced @*IVRE mimics the classic Blicket detection experiment but
intentionally simplifies the sensorimotor control by abstracting it out into a discrete space of object
selection. @R IVRE’s design not only requires the agent to effectively update its belief based on the
information collected so far but also necessitates the capability to come up with maximally efficient
new experiments to disentangle confounding factors.

Measuring performance and concluding this manuscript is not the end but rather the beginning of
our pursuit of an intelligent agent who can learn and think like people when handling uncertainty
during the interaction. With today’s agents catastrophically failing in this problem, how do humans,
even very young children, successfully resolve uncertainty in the world around them without specific
training? What role does training from nurture play in the process? And how to incubate an artificial
agent with this ability through interaction with the environment? With many questions unanswered,
we hope this preliminary work will motivate further research.

Societal Implication We have not identified any negative societal implications arising from the
proposed benchmark. On the contrary, the act of uncertainty resolution within IVRE necessitates
robust reasoning capabilities, contingent on effective intervention strategies. It is noteworthy that
contemporary learning agents still struggle in identifying interconnected variables through interactive
engagement. We believe @RIVRE has the capacity to make a positive contribution towards the
development of agents exhibiting human-level intelligence.

Limitations and Future Work To highlight reasoning and uncertainty reduction, we design
@ IVRE with synthetic instead of real-world scenarios. Given the challenges associated with visual
perception and action in the real world, additional research is required to investigate how agents can
effectively address uncertainty within a more complex environment. €& IVRE also employs relatively
simple causal structures to create uncertainty. This calls for further research to study how machines
and humans can actively resolve uncertainties from different levels in various causal structures.
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