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Abstract

Vehicle aerodynamics optimization has become critical for automotive electrifica-
tion, where drag reduction directly determines electric vehicle range and energy
efficiency. Traditional approaches face an intractable trade-off: computationally
expensive Computational Fluid Dynamics (CFD) simulations requiring weeks per
design iteration, or simplified models that sacrifice production-grade accuracy.
While machine learning offers transformative potential, existing datasets exhibit
fundamental limitations—inadequate mesh resolution, missing vehicle compo-
nents, and validation errors exceeding 5%—preventing deployment in industrial
workflows. We present DrivAerStar, comprising 12,000 industrial-grade auto-
motive CFD simulations generated using STAR-CCM+® software. The dataset
systematically explores three vehicle configurations through 20 Computer Aided
Design (CAD) parameters via Free Form Deformation (FFD) algorithms, includ-
ing complete engine compartments and cooling systems with realistic internal air-
flow. DrivAerStar achieves wind tunnel validation accuracy below 1.04%—
a five-fold improvement over existing datasets—through refined mesh strategies
with strict wall y* control. Benchmarks demonstrate that models trained on this
data achieve production-ready accuracy while reducing computational costs from
weeks to minutes. This represents the first dataset bridging academic machine
learning research and industrial CFD practice, establishing a new standard for
data-driven aerodynamic optimization in automotive development. Beyond auto-
motive applications, DrivAerStar demonstrates a paradigm for integrating high-
fidelity physics simulations with Artificial Intelligence (AI) across engineering
disciplines where computational constraints currently limit innovation.

1 Introduction

Aerodynamic optimization has become increasingly crucial as the automotive industry undergoes
rapid transformation toward environmentalization, electrification, and intelligentization ( s

). Precise aerodynamic design directly impacts electric vehicle range ( , ),
fuel efficiency ( . ), fluid-excited noise ( s ), and high-
speed stability ( , ). Beyond industrial applications, high-fidelity external flow field

data enables deeper integration between CFD and data-driven methods for studying complex flow
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Figure 1: DrivAerStar dataset features. (a) Multiple geometry data formats: mesh (top) serves as primary
representation while point cloud (bottom) enables alternative computational approaches and geometry analy-
sis. (b) Complete vehicle modeling includes detailed engine bay compartment assembly (top) and underbody
components (bottom), distinguishing DrivAerStar from previous automotive datasets. (c) Internal airflow
simulation capabilities featuring air inlet (top) and outlet (bottom) simulations, enabled by precise internal
component modeling to support comprehensive automotive system research. (d) Velocity field cross-sections
showing internal engine compartment flow at vehicle centerline (y = 0 m) and external flow field at tire axle
plane (z = 0.1 m).

dynamics. However, traditional numerical simulations require prohibitive computational resources,
while existing datasets lack engineering fidelity for Internal Combustion Vehicle (ICV) (Payri et al.,
2015), Hybrid Electric Vehicle (HEV) (Hannan et al., 2014), and Battery Electric Vehicle (BEV)
(Upadhyaya and Mahanta, 2023; Bjerkan et al., 2016) applications, creating urgent demand for
datasets combining precision with comprehensive parameter coverage.

Recent automotive datasets like DrivAerNet++ (Elrefaie et al., 2024) and DrivAerML (Ashton et al.,
2024c¢) provide valuable foundations but exhibit critical limitations preventing industrial adoption.
Their mesh strategies inadequately resolve gradient-dependent fields, causing boundary layer dis-
tortion and numerical diffusion errors. These resources focus on limited vehicle model deforma-
tions, failing to represent aerodynamic characteristics across diverse vehicle types and operating
conditions. Furthermore, they deviate from industrial standards in turbulence modeling and solver
configuration, producing results that diverge significantly from wind tunnel measurements. These
shortcomings prevent the development of industrial-grade surrogate models capable of optimizing
design features within minutes rather than weeks.

We present DrivAerStar, addressing these limitations through industrial-grade STAR-CCM+®
simulations. Our approach overcomes OpenFOAM®’s inherent wall shear stress calculation de-
ficiencies by implementing refined mesh strategies with targeted aerodynamic sensitivity refine-
ments, sub-regional surface adaptation, and optimized boundary layer resolution. Strict control of
dimensionless wall distance y* values (Schlichting and Kestin, 1961) ensures accurate boundary
layer simulation while achieving superior computational precision with comparable mesh counts.
The dataset spans multiple vehicle platforms with systematic FFD-based geometric parameter vari-
ations, representing diverse aerodynamic characteristics across vehicle types and operating condi-
tions. Critically, we include complete front compartment assemblies with engine components and
cooling systems, featuring realistic airflow channels that capture real-world vehicle aerodynamics.

Our 1,080,000 CPU core-hour computational investment across 100 nodes (see Section C.5) pro-
duces a 20 TB dataset containing 12,000 samples—350% more than existing automotive datasets.
The comprehensive data covers pressure distributions, velocity vectors, turbulent kinetic energy,
and high-precision aerodynamic coefficients with drag coefficient accuracy of +0.012. Following
Loughborough University Wind Tunnel Lab specifications (Varney et al., 2020) and automobile
manufacturer simulation standards, we achieve pressure coefficient errors below 1.04% compared
to experimental data. Table 1 presents detailed comparisons with existing automotive CFD datasets.

To validate effectiveness, we benchmark multiple machine learning architectures, including Tran-
solver (Wu et al., 2024), GNOT (Hao et al., 2023), and PointNet (Qi et al., 2017). Our evaluation
analyzes surface pressure distributions and derived aerodynamic coefficients through surface pres-
sure integration, establishing a multi-scale assessment for complete aerodynamic performance char-
acterization. These benchmarks demonstrate DrivAerStar’s utility for training industrial-grade
surrogate models while providing foundations for optimization research.



Our contributions are:

» High-fidelity dataset: DrivAerStar provides 20 TB of external flow field data from 12,000
industrial-grade STAR-CCM+® simulations across multiple vehicle configurations, delivering un-
precedented data quality for surrogate model training.

* Adaptive mesh methodology: We employed refined mesh strategies with adaptive regional re-
finement and strict wall y* control, achieving superior boundary layer resolution that overcomes
limitations of previous approaches.

* Complete vehicle modeling: Integration of front compartment assemblies with engines and cool-
ing components creates continuous cooling flow channels, accurately representing real-world ve-
hicle operating conditions.

* Comprehensive benchmark: We established multi-scale performance evaluation across surface
and volumetric data, revealing current limitations and identifying research directions including

scientific function discovery ( , ), forward Partial Differential Equation (PDE) prob-
lems ( , ; s ), simulation super-resolution ( s ), and
inverse PDE reconstruction ( , ).

2 Related Work

Machine Learning CFD Benchmarks Large-scale, high-fidelity datasets form the foundation for
deep learning applications in CFD. Recent standardized benchmarks support research in physical
simulation and PDE modeling, including BubbleML ( , ) for multiphase flows, La-
grangebench ( , ) for Lagrangian particle-based simulations, BLASTNet (

, ) and BLASTNet 2.0 ( s ) for turbulent flow datasets, and PDEBench
( , ) for comprehensive PDE-based physical systems. While these datasets pro-
vide valuable contributions, they predominantly feature simplified geometries and idealized con-
ditions that fail to capture the complex geometries and multiphysics interactions encountered in
industrial applications.

Aerospace Aerodynamics Datasets Aerospace applications have driven advances in parameter-
ized aerodynamic optimization through datasets enabling efficient simulation of complex geome-
tries. AirfRANS ( , ) provides a 2D airfoil database built using OpenFOAM® with
parametric meshing strategies for systematic NACA airfoil studies across operational ranges (Mach
numbers 0.2-0.8, angles of attack from —8° to 20°), establishing clear mappings between geometric
deformations and aerodynamic performance while providing insights into transonic shock effects.
Extending to three dimensions, AircraftVerse ( , ) offers 27,714 complete aircraft
configurations with varied wing parameters, powertrain characteristics, and performance metrics,
combining deep learning for geometry generation with engineering models for aerodynamic cal-
culations. However, these aerospace datasets address fundamentally different flow regimes and
geometric complexities than automotive applications, limiting their direct applicability to ground
vehicle aerodynamics.

Automotive Aerodynamics Datasets Early automotive datasets based on simplified geometries—
ShapeNet Car ( , ; s ), WindSor Car ( s ),

Table 1: Comparative analysis of state-of-the-art automotive CFD datasets. Quantitative benchmarking
across experimental validation capabilities, numerical resolution parameters, and simulation accuracy metrics.
PIV indicates flow field validation availability; wall y™ represents dimensionless wall distance for boundary
layer resolution quality; average C'p precision measures uncertainty bounds of drag coefficients; wind tunnel
error shows percentage deviation from experimental measurements. Data are sourced from original literature
and publicly released datasets, with detailed information available in Section E.

Metric DrivAerNet++ ( R y  DrivAerML ( R ) DrivAerStar
PIV No No Yes
Engine compartment No No Yes
Cooler No No Yes
Samples 8,000 500 12,000
Wall y* range [50, 300] - [30,200]
Average C'p precision 0.012 0.010 0.005
Wind tunnel error (%) <5.0 <6.5 1.04
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Figure 2: DrivAerStar data generation. (a) Three canonical DrivAer reference bodies (Estateback, Notch-
back, and Fastback) serve as geometric foundations. (b) Parametric morphing systematically varies 20 vehicle
components, including greenhouse (top), rear diffuser (middle), and trunk lid (bottom). (c) Industrial-grade
mesh generation in STAR-CCM+® produces refined hexahedral-dominant meshes with precise wheel align-
ment and boundary layer resolution for complex flow capture. (d) Comprehensive CFD simulations generate
diverse flow visualizations: surface pressure, wall shear stress, velocity magnitude, streamline patterns, flow
separation regions (C'p = 0 iso-surfaces), and pressure coefficient slices revealing key aerodynamic structures.

and Ahmed-body configurations (Li et al., 2023; Ashton et al., 2024b)—advanced the field but cre-
ated substantial gaps between research outcomes and industrial requirements. More sophisticated
approaches emerged with the DrivAerNet series, including DrivAerNet (Elrefaie et al., 2025) and
DrivAerNet++ (Flrefaie et al., 2024), implementing parametric simulations using OpenFOAM®.
DrivAerML similarly offers 500 parametrically morphed variants of the DrivAer Notchback model
with pressure, velocity, and turbulence fields. Concurrent work by Warner and Emory (2025) in-
troduced AeroSUYV, featuring 1,000 detached eddy simulation configurations from an open-access
reference model extending the DrivAer platform, executed using proprietary in-house solvers. De-
spite these advancements, existing automotive datasets exhibit critical limitations preventing indus-
trial adoption: insufficient mesh resolution for complex geometries, inadequate turbulence modeling
within the OpenFOAM® framework, and failure to account for crucial interactions between engine
compartment thermal management and external aerodynamics.

DrivAerStar addresses these fundamental limitations by employing DrivAer vehicle geometry
with the industry gold standard STAR-CCM+® solver for mesh generation and flow solution. As
detailed in Table 1, our approach delivers substantial advantages in mesh resolution, aerodynamic
accuracy, parametric dimensionality, and engine compartment simulation fidelity. These advance-
ments establish a new benchmark for data-driven automotive aerodynamics research, bridging the
gap between academic machine learning exploration and practical engineering applications while
supporting development of general pretrained aerodynamics operator networks with potential long-
term impacts detailed in Section B.

3 The DrivAerStar Dataset

Developed using industry-standard STAR-CCM+®, DrivAerStar bridges academic research and
industrial applications through rigorous validation, achieving 1.04% mean relative error compared



to wind tunnel measurements (Table 2). The dataset comprises 12,000 high-fidelity simulations
of engine-integrated vehicle geometries, each containing STL representations with at least 4 mil-
lion triangles and complementary data formats capturing surface distributions, full-field flow, and
cross-sectional aerodynamic data. Our workflow (Figure 2) encompasses geometric morphing (Sec-
tion 3.1), mesh generation (Section 3.2), and industrial-grade simulation (Section 3.3).

Unlike existing automotive CFD datasets, DrivAerStar incorporates the highest-fidelity geometric
data with three rear body configurations, each featuring complete air intake, engine compartment,
and cooling systems (Figure 1). To ensure industrial relevance, we systematically varied 20 fine-
tuned CAD parameters (Table A1) covering both local and global vehicle features using Blender®
through Latin Hypercube Sampling (LHS), creating a comprehensive design exploration space (Fig-
ure A2). The dataset spans Reynolds numbers from 9.46 x 10° to 1.48 x 107, with flow features
available in volumetric, slice, and surface formats including velocity, pressure, surface properties,
wall shear stress, mesh configurations, y* values, 3D streamlines, and iso-surfaces.

DrivAerStar provides comprehensive aerodynamic metrics aligned with physics field data: pres-
sure coefficient (Cp), friction coefficient (C'r), drag coefficient (Cp), and lift coefficient (Cp).
Beyond performance metrics, we supply complete numerical data (pressure, velocity, wall shear
stress) alongside reproducible workflows with validation scripts following industrial standards. Sim-
ulation results are detailed in Section C.6. The dataset subset, encompassing over 12,000 VTK sur-
face files and EnSight flow field files totaling approximately 20 TB, is accessible via our project
homepage under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
(CC BY-NC-SA 4.0) license, with data processing and benchmarking code included. Detailed li-
censing information is provided in Section A.

3.1 Geometric Morphing

DrlvAerStar builds upon the experimentally validated DrivAer reference vehicle platform (

, ), featuring three canonical rear configurations: Fastback, Estate-
back and Notchback To generate our comprehensive dataset of 12,000 geometrically diverse vehi-
cle models, we implemented systematic FFD techniques targeting critical aerodynamic components.
This approach (Figure 3) enables precise parametric control over vehicle geometry, transforming the
base Fastback model into varied body and wheel configurations through controlled parameter adjust-
ments. Complete technical details of our FFD implementation are provided in Section C.1.
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Figure 3: Geometric morphing pipeline example. Our parametric deformation framework transforms the
baseline model through three sequential operations: (i) Body component morphing (top-left) applies 15 con-
trolled parameter adjustments, including dimensional modifications and component repositioning; (ii) Wheel
morphing (bottom-left) enables precise tire parameter control; and (iii) Whole-body scaling and wheel in-
stallation (right) applies 3 scaling parameters while aligning wheels to scaled positions. This systematic FFD
approach generates geometrically diverse yet aerodynamically realistic vehicle configurations.
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Figure 4: Cross-sectional views of mesh generation strategy. (a) Longitudinal section at y = 0 m shows
four nested refinement zones with progressive cell density: far-field (120-480 mm), intermediate domain (< 60
mm), near-body region (< 30 mm), and high-resolution zone (< 15 mm) surrounding the vehicle. Dedicated 6-
layer boundary layer refinement with total thickness under 24 mm captures viscous phenomena. (b) Transverse
section at x = 3.12 m demonstrates consistent refinement strategy with graduated cell density approaching
vehicle surfaces, enabling accurate wake structure resolution while maintaining computational efficiency.

3.2 Mesh Generation

Our automated mesh generation workflow consists of two sequential stages: surface wrapping and
volume mesh generation.

Surface Wrapping Morphed geometries frequently exhibit topological defects, including mesh
intersections and open edges, requiring systematic resolution. We employed STAR-CCM+®’s sur-
face wrapping functionality on individual components—vehicle body, drivetrain, engine compart-
ment, wheels, and coolers—to ensure simulation-ready geometry. Critical regions with fine features,
particularly drivetrain and grille openings, received 10% relative size refinement and specialized
contact prevention parameters to maintain geometric fidelity while eliminating surface intersec-
tions. Each component underwent independent wrapping before integration into the computational
domain. Complete technical specifications are detailed in Section C.2.

Volume Mesh Generation Our volume mesh (Figure 4) employs refinement strategies aligned
with validated practices (Heft et al., 2012; Zhang et al., 2019) using STAR-CCM+®’s production-
grade algorithms. Each simulation domain comprises approximately 12 million hexahedral-
dominant cells with strategic density distribution targeting aerodynamically significant features. The
meshing protocol incorporates high-resolution prismatic boundary layers on all vehicle surfaces—
both external and internal—ensuring proper resolution of boundary phenomena including separa-
tion, reattachment, and near-wall flow structures. To maintain dataset consistency, we automated the
entire meshing sequence through Java macros with identical parameters across all 12,000 simula-
tions. Additional details are provided in Section C.3.

3.3 Industrial-grade Simulation

Computational Domain and Boundary Conditions Our framework implements automotive
industry-standard simulation protocols using a domain extending 15 vehicle lengths streamwise,
10 widths laterally, and 12 heights vertically. The inlet boundary, positioned three vehicle lengths
upstream, imposes 40 m/s (144 km/h) freestream velocity with 1% turbulence intensity generated
through spectral synthesizer algorithms. The downstream boundary enforces zero-gradient pressure
outlet conditions. Vehicle-ground interaction employs sliding wall boundaries with rotating refer-
ence frames, calculating wheel angular velocity (w = uq/r) based on instantaneous tire geometry.
The engine compartment thermal management system incorporates experimentally validated porous
media models with 0.6 porosity. All simulations utilize T/CSAE112-2019 standard atmospheric
conditions: air density p = 1.225kg/m?® and dynamic viscosity 1 = 1.85508 x 107° Pa - s.

Flow Physics Modeling Simulations solve 3D steady-state Reynolds-Averaged Navier—Stokes
(RANS) equations (Reynolds, 1895) for incompressible flow with comprehensive wall distance
modeling. We employed Shear-Stress Transport (SST) (Menter, 1994) k-w turbulence formula-
tion, selected for demonstrated accuracy in predicting flow separation and reattachment phenomena



critical to automotive aerodynamics. Our hybrid all-y* wall treatment automatically transitions
between direct viscous sublayer resolution and wall function approaches based on local mesh re-
finement, maintaining y* values below 200 while optimizing computational efficiency. Gradient
reconstruction utilizes cell-based least squares minimization, ensuring numerical stability in regions
with strong pressure gradients and separated flow. Complete governing equation formulations are
provided in Section C.4.

Sovler Our solution strategy employs a pressure-based segregated solver with Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) algorithm ( , ) for
pressure-velocity coupling. Spatial discretization implements second-order schemes for pressure
and momentum equations, with first-order upwind treatment for turbulence quantities, enhancing
stability. Linear equation systems are resolved using Algebraic Multigrid (AMG) methods (

, ) with V-cycle iterations (1 pre/post-sweep), achieving convergence to residuals be-
low 10~° within 30 iterations per time step. Carefully calibrated under-relaxation factors (0.7 for
velocity, 0.8 for turbulence quantities) balance convergence rate with solution stability. Gauss-Seidel
relaxation enhances iterative efficiency, particularly in high-gradient regions such as wheel wells and
underbody flow channels.

3.4 Experimental Validation

Wind Tunnel Validation We validated our simulation methodology against high-fidelity measure-
ments from Loughborough University Large Wind Tunnel facility ( , ), focusing on
drag coefficient (Cp)—the critical automotive aerodynamics performance metric. Our 25%-scale
simulations precisely matched physical models provided by FKFS Stuttgart, ensuring geometric
consistency between computational and experimental configurations. As shown in Table 2, simula-
tions demonstrate exceptional agreement with experimental measurements across all three rear body
configurations (Fastback, Notchback, Estateback), achieving 1.04% average relative deviation with
maximum discrepancy below 1.8%. This correlation substantiates our simulation methodology’s
predictive accuracy for aerodynamic performance assessment. Detailed convergence analysis and
mesh independence studies are presented in Section C.7.

Table 2: Data scaling effects on drag coefficient prediction accuracy. Transolver model performance anal-
ysis with increasing training sample size. Left and center: Scatter plots of predicted versus ground truth Cp
values for models trained on 400 and 1200 samples, respectively, with diagonal green line representing per-
fect prediction (y = x) and red regression line showing actual prediction trends with correlation coefficients.
Right: Violin plots comparing prediction error distributions, demonstrating improved performance with in-
creased data volume (mean absolute error decreasing from 2.99% to 2.78%). Results confirm DrivAerStar’s
effective learning scaling properties and potential for further accuracy improvements with additional training
data. Comprehensive scaling results across all configurations are detailed in Section D.2.

Rear Configuration Wind Tunnel Cp DrivAerStar Cp Deviation (%)
FastBack 0.278 0.2749 1.12%
NotchBack 0.279 0.2767 0.82%
Estateback 0.299 0.2955 1.17%

PIV Validation Flow structure prediction was further validated through Particle Image Velocime-
try (PIV) measurements in aerodynamically critical regions—front stagnation zones, A-pillar vor-
tices, and rear wake structures. Surface pressure distributions were compared using data from 60
strategically positioned pressure taps, emphasizing the interchangeable rear configurations. As vi-
sualized in Figure 5, these comparisons demonstrate excellent agreement in both magnitude and
spatial distribution of pressure coefficients and velocity fields. The observed congruence confirms
that our dataset accurately captures complex aerodynamic phenomena governing vehicle perfor-
mance, including internal engine bay flows typically omitted in simplified models. Quantitative
simulation-experiment difference analysis is provided in Section C.8.
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Figure 5: Validation of flow physics predictions against wind tunnel measurements. (a) Velocity magnitude
distributions compare wind tunnel PIV measurements (top row) with DrivAerStar predictions (bottom row)
in wake regions and stagnation zones, demonstrating excellent flow structure agreement. (b) Surface pressure
coefficient (Cp) distributions across vehicle body surfaces show consistent prediction accuracy between exper-
imental and computational results for all three vehicle configurations, confirming accurate capture of complex
aerodynamic phenomena.

4 Benchmarks on DrivAerStar

4.1 Experimental Setup

Benchmark Objectives We establish comprehensive machine learning benchmarks on the
DrivAerStar dataset to evaluate its industrial relevance and predictive capability. These bench-
marks assess state-of-the-art deep learning architectures on aerodynamic prediction tasks using
high-fidelity CFD data representative of real automotive development. The primary task involves
predicting surface pressure (p) and wall shear stress (7,,) distributions from vehicle geometry, as
well as the derived drag coefficients (C'p). This setup aligns with recent advances in automotive
aerodynamics machine learning research (Hao et al.,, 2023; Wu et al., 2024; Nabian et al., 2024;
Choy et al., 2025; Liu et al., 2025; Bleeker et al., 2025) while providing realistic validation through
our industry-standard dataset.

Dataset Configurations We systematically evaluated dataset scale and diversity effects. Initial
benchmarks used restricted training sets (400-1200 samples) from single vehicle configurations (Es-
tateback), while advanced experiments incorporated multi-configuration datasets spanning all three
rear body types (Fastback, Estateback, Notchback). All experiments maintained consistent vali-
dation and test splits with 150 cases per configuration type. Additional experimental details are
provided in Section F.

Evaluation Protocol Model performance evaluation ensures accurate local flow physics represen-
tation and reliable global performance prediction—essential requirements for industrial applications.
For spatial distribution accuracy of surface fields, we employ the relative Lo error. Each flow field
variable ¢ (e.g., velocity, pressure) is standardized via mean (u4) and standard deviation (o) com-
|| Pprea — Purue | |2
N . I Puue |2
among variables, where ¢preq and ¢y denote standardized predicted and ground-truth flow field
variables, respectively. For integrated quantities (e.g., drag coefficient C'p), we assess absolute and
percentage errors to ensure correct global performance prediction. Complete metric definitions and
standardization procedures are provided in Section D.1.

puted from dataset samples (i.e., (;3 = ¢;—5¢): € = , eliminating scale discrepancies
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Figure 6: Data scaling effects on drag coefficient prediction accuracy. Analysis of Transolver model perfor-
mance with increasing training sample size. Left and center: Scatter plots of predicted versus ground truth C'p
values for models trained on 400 and 1200 samples, respectively. The diagonal green line represents perfect
prediction (y = x), while the red regression line shows the actual prediction trend with correlation coefficients.
Right: Violin plots comparing prediction error distributions, showing improved performance with increased
data volume (mean absolute error decreasing from 2.99% to 2.78%). This demonstrates the dataset’s effective
learning scaling properties and potential for further accuracy improvements with additional samples. Compre-
hensive scaling results across all configurations are provided in Section D.2.
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Figure 7: Surface field prediction accuracy across critical aerodynamic regions. (a) Surface pressure distri-
butions (Pa) comparing ground truth CFD simulation (left), neural network prediction (middle), and point-wise
difference (right). (b) Wall shear stress 7, (Pa) in streamwise direction with ground truth (left), model prediction
(middle), and prediction error (right). The model accurately captures high-gradient regions around A-pillars

and wheel wells while maintaining precision in uniform flow areas, demonstrating robust performance across
diverse aerodynamic phenomena.

4.2 Results

Surface Field Prediction We evaluated three state-of-the-art deep learning architectures on
DrivAerStar for predicting surface pressure and wall shear stress fields, as well as the derived
drag coefficients. The performance metrics on the test set are summarized in Table A2.

Each model was trained on both specialized single-configuration subsets (Estateback only) and the
complete multi-configuration dataset (Fastback, Notchback, and Estateback). Results consistently
showed higher prediction errors on the complete dataset, confirming that morphological diversity
significantly increases prediction complexity. This performance differential quantifies the funda-
mental trade-off between prediction accuracy and geometric variability in aerodynamic machine
learning tasks. Representative prediction visualizations are presented in Figure 7.

Data Scaling Analysis To investigate model generalization capabilities and data efficiency, we
conducted systematic scaling experiments following DrivAer protocols. Both single-configuration
subsets and complete datasets were divided into training (80%) and test (20%) partitions, with pro-
gressive increases in training samples while maintaining consistent test evaluation. The resulting
learning curves (Figure 6) reveal characteristic scaling behaviors for each architecture and quantify
data requirements for achieving specific prediction accuracy thresholds.



Table 3: Drag coefficient prediction scaling analysis in multi-vehicle configurations. Transolver model per-
formance across varying training dataset sizes (400-12,000 samples) evaluated on a consistent validation set of
150 samples per vehicle configuration. Learning curves demonstrate systematic improvement in C'p prediction
accuracy with increased training data, confirming the dataset’s scalability and the model’s ability to leverage
additional samples for enhanced aerodynamic performance prediction across diverse vehicle geometries.

Metrics 400 800 1,200 12,000
C'p validation loss 0.0375 0.0335 0.0286 0.0266
Improvement - 10.67% 23.73% 29.07%

We further assessed training size effects on Transolver’s predictive performance for drag coefficient
(Cp)—akey CFD metric for vehicle acrodynamic optimization—in multi-vehicle settings. Results
including Cp validation loss and relative improvement values are summarized in Table 3. Raw
scaling experiment data (loss curves, test sample distributions) are provided in Section D.3.

5 Conclusion

We present DrivAerStar, a comprehensive automotive aerodynamics dataset comprising 12,000
high-fidelity CFD simulations that bridges the gap between academic research and industrial appli-
cations. Generated using industry-standard STAR-CCM+® software across three rear body configu-
rations with 20 systematically varied CAD parameters, DrivAerStar represents the most compre-
hensive and validated automotive aerodynamics dataset to date.

Our key contributions establish new standards for CFD datasets in automotive engineering. We pro-
vide the highest-fidelity geometric representations available, incorporating complete engine com-
partments, cooling systems, and drivetrain components typically omitted in simplified academic
models. The systematic parametric morphing using FFD techniques creates geometric diversity
while maintaining industrial relevance. Our rigorous experimental validation against wind tunnel
measurements achieves exceptional accuracy with 1.04% mean relative error for drag coefficients
and excellent agreement in PIV flow field comparisons, establishing confidence in the dataset’s pre-
dictive capability for real-world applications.

The industrial-grade simulation methodology employs production-level meshing protocols with 12
million hexahedral-dominant cells per case, capturing boundary layer phenomena and separation
dynamics critical to automotive aerodynamics. Our comprehensive data formats provide complete
access to flow physics information. The resulting 20TB dataset includes pressure coefficients, wall
shear stress, velocity fields, streamlines, and iso-surfaces, enabling diverse research applications
from fundamental flow physics to applied design optimization.

Our extensive machine learning benchmarks demonstrate that models trained on DrivAerStar
achieve industrial-grade prediction accuracy while reducing computational costs by orders of mag-
nitude compared to traditional CFD approaches. The systematic evaluation reveals fundamental
trade-offs between geometric variability and prediction accuracy, providing crucial insights for de-
veloping robust aerodynamic prediction models and guiding future dataset development efforts.

DrivAerStar’s impact extends beyond immediate research applications to enable transformative
changes in automotive development processes. By providing validated, high-fidelity training data,
we enable the development of fast, accurate surrogate models that can replace computationally ex-
pensive CFD simulations in design optimization loops. This supports rapid design exploration,
real-time performance assessment, and integration of aerodynamic considerations throughout the
vehicle development cycle.

The open availability of DrivAerStar under permissive licensing, combined with comprehensive
documentation and reproducible workflows, establishes a foundation for collaborative research in
automotive aerodynamics. Future extensions will address current limitations, including multidisci-
plinary coupling with thermal management and structural dynamics, detailed in Section G.

By democratizing access to industrial-quality aerodynamic data, DrivAerStar empowers re-
searchers worldwide to develop next-generation computational methods that accelerate the tran-
sition to more efficient, sustainable automotive designs. This work represents a critical step toward
data-driven automotive engineering, where machine learning and high-fidelity simulation combine
to revolutionize vehicle development practices.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the main claims made in the abstract and introduction accurately reflect
our contribution and scope, which is the comprehensive, reproducible, and industrial-grade
dataset DrivAerStar.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have discussed the limitations in Section G, including insufficient geomet-
ric deformation to cover all designs in actual industrial development, and the CFD solver
may still deviate from the real-industry conditions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

e The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided a detailed explanation of the foundational theories of fluid
dynamics and a thorough simulation setup clarification according to the theories, which
can be found at Section C.4.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details of the data generation pipeline at Sec-
tions 3 and C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Both DrivAerStar and code for data processing and benchmarking are ac-
cessible via our project homepage. We provide the detailed instructions for our dataset and
code on the related websites.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

e The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have made clear the dataset generation settings, reported how we validate
and benchmark the SOTA models. More details can be found in the Sections D.2 and F.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer:

Justification: Due to computational resource constraints, we were unable to establish the
statistical significance of our experimental results.
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8.

10.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer “’Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% Cl, if the hypothesis of
Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have stated the high-performance computation cluster configuration and
CPU core-hours needed in this paper to produce DrivAerStar in Section C.5.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have adhered to the NeurIPS Code of Ethics throughout the entire process
of our research.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]

Justification: We have stated that our work could bring positive societal impacts through
boosting the automotive industry’s development cycle and even extending beyond the field
of automotive aerodynamics in Section B.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

e The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|

Justification: Our paper poses no risk since we have only collected data from credible
sources.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We’ve credited the owner of DrivAer assets and stated the licenses of soft-
ware we used (STAR-CCM+® and Blender®) in the paper.

Guidelines:
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13.

14.

15.

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [Yes]

Justification: Both DrivAerStar and code for data processing and benchmarking are well
documented, and are accessible via our project homepage.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA|
Justification: LLMs are not involved in our core method development in this research.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Resources Availability and Licensing

DrivAerStar is distributed under the CC BY-NC-SA 4.0 license to facilitate academic dissemina-
tion while protecting intellectual property rights. Under this license, users are permitted to copy,
distribute, display, and perform the work, as well as create derivative works, provided that they give
appropriate credit to the original authors, provide a link to the license, and indicate if changes were
made. Commercial use of the work is strictly prohibited without explicit written permission
from the copyright holders.

All associated resources, including source code, datasets, and documentation, are publicly accessible
to ensure transparency and enable reproducibility. Users are encouraged to contribute improvements
through established channels, enhancing the collective value of these open-source resources within
the academic community.

B Broader Impact

DrivAerStar addresses critical needs across multiple research and industrial domains. In academic
research, the high-fidelity dataset enables development of novel geometric deep learning models for
complex fluid dynamics, advancing understanding of how neural networks capture physical phenom-
ena, and supporting investigations into physics-informed machine learning approaches. The dataset
expands available benchmarks for graph neural networks and point cloud methods, establishing new
evaluation standards for fluid dynamics applications.

For industrial applications, DrivAerStar enables development of fast surrogate models that can
replace computationally expensive CFD simulations in design optimization workflows. This capa-
bility supports more efficient automotive development cycles and extends to aerospace applications
where virtual testing reduces reliance on expensive physical prototypes. The dataset addresses grow-
ing industrial demand for understanding deep learning generalization across large solution domains,
promoting integration of high-fidelity physics-based simulations with artificial intelligence.

Beyond immediate applications, DrivAerStar establishes a foundation for data-driven design
methodologies that can transform engineering practices across disciplines facing computational
constraints. By democratizing access to industrial-quality aerodynamic data, the dataset empow-
ers researchers worldwide to develop next-generation computational methods for more efficient and
sustainable engineering designs.

Table Al: Parametric deformation ranges for automotive geometry generation via lattice-based morph-
ing. Twenty parameters control geometric variations across vehicle components, with ranges established from
production vehicle design standards and aerodynamic optimization requirements.

Number Parameter Minimum Maximum Unit

1 Global Scaling 80% 120% -

2 Vehicle Width -0.1 0.1 m

3 Vehicle Length -0.1 0.1 m

4 Ramp Angle -10 10 degree
5 Front Bumper Length  -0.1 0.1 m

6 Windscreen X -0.05 0.05 m

7 Windscreen Z -0.05 0.05 m

8 Side Mirrors X -0.05 0.05 m

9 Side Mirrors Z -0.05 0.05 m

10 Rear Window X -0.05 0.05 m

11 Rear Window Z -0.05 0.05 m

12 Trunk Lid Angle -10 10 degree
13 Trunk Lid X -0.05 0.05 m

14 Trunk Lid Z -0.05 0.05 m

15 Diffuser Angle -10 10 degree
16 Greenhouse Angle -10 10 degree
17 Front Hood Angle -10 10 degree
18 Intake Hood Angle -10 10 degree
19 Tire Diameter -0.033 0.033 m

20 Tire Width -0.015 0.015 m
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Figure Al: Parametric deformation diversity in DrivAerStar. Five deformation categories generate ge-
ometric variations through Latin Hypercube Sampling: (a) Linear displacement of four vehicle components
within £0.05m in x and z directions. (b) Angular rotation of six body elements ranging from —100 to 10o.
(c) Stretching and compression of vehicle body and front bumper between +0.1m. (d) Tire deformation with
diameter variations of +0.033m and width variations of £0.015m. (e) Global scaling from 80% to 120% of

baseline dimensions.

C Dataset Generation, Simulation, and Validation

C.1 Geometric Morphing via Reference Vehicle Architecture and Parametric Design

We develop a parametric geometry generation framework using lattice deformation to create diverse
automotive geometries from the open-source DrivAer vehicle model. Our approach employs FFD
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techniques implemented through Python scripts on the Blender® platform, establishing a 32 x 8 x 8
three-dimensional lattice structure that enables fine-grained control over local body regions while
maintaining geometric integrity.

The implementation begins with bounding box analysis to determine spatial distribution of geo-
metric features, establishing mapping relationships between local and global coordinate systems.
The parametric framework divides the vehicle into nine key regions including front bumper, trunk,
and roof, with regional deformation control achieved through predefined index grouping. We de-
fine 20 key parameters covering body morphology, dimensional scaling, and wheel configurations
(Table Al). Parameter ranges reference production vehicle design standards and incorporate CFD
simulation experience to set boundary conditions that ensure engineering feasibility, with diffuser
inclination constrained within +10° to balance downforce and drag requirements.

LHS generates 1000 parameter samples across engineering-reasonable ranges for statistical repre-
sentativeness, producing thousands of unique geometric configurations. Each parameter corresponds
to specific physical modifications: dimensional stretches (front bumper length +0.1m), positional
adjustments (trunk inclination +0.05m), size scaling (vehicle width +£0.1m), and angular rotations
(windscreen inclination +0.05m). Parameter distributions are detailed in Figure A1, with each con-
figuration generating unique variants through nine independent deformation functions.

For cooling system integration—absent in previous datasets—we bind front grille, radiator, engine
bay, and gearbox components to unified lattice deformers using LHS methodology. This coordi-
nated deformation prevents spatial interpenetration while maintaining positional coherence among
complex internal components during geometric transformations.

Precise wheel alignment employs a dedicated four-wheel positioning algorithm with predefined fea-
ture points including 3D coordinate systems for all four wheels. The algorithm dynamically calcu-
lates axle positions by tracking spatial transformations of these feature points during deformation,
ensuring geometric matching between axles and deformed body while maintaining lattice defor-
mation controllability and avoiding component distortion issues common in traditional morphing
techniques.

This lattice deformation approach reduces geometric generation time by over 90% compared to tra-
ditional CAD parametric methods while preserving industrial-grade surface quality. The systematic
parameterization via FFD maintains geometric continuity, topological consistency, and engineering
feasibility while establishing a deformable configuration space rooted in industrial design practices.
As illustrated in Figures A2 to A4, the method preserves aerodynamic baseline characteristics of
the reference vehicle while enabling parametric integration of engineering details such as cooling
systems and chassis components, generating complex geometric interactions including length-width
coupling variations that provide foundation for neural networks to capture nonlinear flow features.

Figure A2: Lattice deformation framework for DrivAer vehicle configurations. (a) Deformation lattice
structure with vehicle scaling, width, and length adjustment parameters. (b) Front vehicle section parameters
controlling bumper and forward geometry modifications. (c) Rear section parameter sets for three vehicle types:
fastback (left), notchback (center), and estateback (right) configurations. (d) Wheel geometry parameters for
tire diameter and width variations.
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Figure A3: Individual parameter deformation visualization. Lattice deformation results for single-
parameter variations across minimum to maximum ranges. Blue models represent minimum parameter values,
purple models represent maximum values. Wheel size parameters are excluded to emphasize vehicle body ge-
ometry modifications.

Future research will integrate RANS simulation results to establish high-dimensional mapping mod-
els between morphological parameters and aerodynamic coefficients, supporting development of
intelligent aerodynamic optimization frameworks.
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Figure A4: Multi-parameter deformation examples by vehicle type. Deformation variations for three rear
configurations: estateback (top), notchback (middle), and fastback (bottom).
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Figure A5: Surface wrapping process using STAR-CCM+®. Surface wrapping workflow applied to vehicle
components: (a) Initial generated surface mesh with critical defects. (b) Wrapped vehicle body mesh. (c)
Wrapped engine and gearbox components. The process addresses three fundamental surface errors: (d) close
proximity faces, (e) pierced faces, and (f) free edges, with defective faces highlighted in purple and problematic
edges in green.

C.2  Surface Wrapping Implementation Details

Generated vehicle geometries exhibit critical surface defects that prevent direct CFD computation,
requiring mandatory surface wrapping preprocessing for all components. As illustrated in Fig-
ure A5, we employ STAR-CCM+®’s surface wrapping functionality to independently process each
component (body, drivetrain, wheels) of the initial surface mesh, addressing three fundamental mesh
errors: (i) Close Proximity faces with minimum distances below 0.1 mm, (ii) Pierced Faces that cre-
ate flow leakage paths, and (iii) Free Edges that compromise watertight geometric continuity.

Aerodynamically critical regions, including grilles and wheel arches, receive enhanced treatment
through local refinement with 10% size reduction and curvature adaptation using a minimum spacing
of 0.5 mm. Post-wrapping validation ensures aspect ratios remain below 20 and skewness angles
exceed 10° across all mesh components. This optimized workflow achieves 98.6% defect reduction
while maintaining 0.28 mm geometric fidelity, enabling reliable CFD simulations with aerodynamic
feature resolution below 1 mm accuracy.

C.3 Regional Mesh

Mesh Generation Framework The parallel mesh generation employs a global base size Ly =
0.24 m with surface growth rate 1.3, utilizing hexahedral elements enhanced by triangular surface
reconstruction for geometric fidelity. Dual refinement strategies ensure critical feature capture: cur-
vature refinement with 0.01 m deviation distance and 36 points per circle, plus proximity refinement
for chassis, engine bay, and wheel components.

Volume growth adopts very slow mode with maximum element size constrained to 0.48 m (200%Lg)
and minimum surface size to 0.024m (10%Lg). Three-tiered volume controls implement pro-
gressive refinement: Block 2 at 0.06 m (25%Lg), Block 3 matching Lg, and Block 4 at 0.024m
(10%Lo).

Surface and Boundary Layer Treatment Vehicle body surfaces receive enhanced treatment with
target surface size 0.0144m (6%Ly) and minimum size 0.0096 m (4%Lg). Prism layers follow
geometric progression with first-layer height 2; = 0.005 mm, expansion ratio 7 = 1.2, and 8-layer
configuration yielding total thickness H = hy - (r® —1)/(r — 1) ~ 0.114 mm. External boundaries
(inlet/outlet/side/top) utilize coarser 0.48 m elements without prism layer refinement.

Quality Control and Validation Mesh quality maintains triangular surface elements above a 0.05
minimum threshold with boundary layer resolution enforcing y*+ > 30 using blended wall functions.
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Mesh independence verification employs three resolutions—coarse (0.48 m), medium (0.24 m), and
fine (0.12 m)—validated through drag coefficient and flow field analysis.

C.4 Navier-Stokes Equations and Turbulence Model

Reynolds-Averaged Navier-Stokes Approach Automotive external aerodynamics simulation re-
quires appropriate turbulent flow treatment. While Direct Numerical Simulation (DNS) captures all
turbulence scales, it demands prohibitive computational resources for practical automotive applica-
tions. This study employs the RANS approach, modeling time-averaged flow fields at significantly
reduced computational cost compared to DNS or Large Eddy Simulation (LES) alternatives.

The RANS equations derive from Reynolds decomposition, where each flow variable decomposes
into mean and fluctuating components: ¢ = ¢ + ¢’. For steady-state incompressible flow, the
governing equations become:

op oY —

P + V- (pv) =0, (Al)
P _
—(p¥)+ V- (pv®V) = =Vp+ V- (T + Trans) , (A2)

ot

where p, v, p, and T represent air density, mean velocity vector, mean pressure, and mean viscous
stress tensor, respectively. The Reynolds stress tensor Trans requires turbulence modeling closure:

'y uwv uw!
Trans = —p | w0 vV Vv |, (A3)
ww'  vw  ww'

where v/, v/, w’ represent velocity fluctuations in the z-, y-, z-directions, respectively.

SST k-w Turbulence Model This study employs the SST k-w turbulence model ( , ),
solving transport equations for turbulent kinetic energy k and specific dissipation rate w. This model
provides superior performance for boundary layers under adverse pressure gradients and applies
throughout the boundary layer without wall-distance computation, yielding a reliable approximation
for automotive aerodynamics.

The transport equations are formulated as:

0
51 (PR) + V- (pkv) =V - [(n + onpe) VE] + Py = pB* fix (wk — woko) (A4)
0
() + V- (pw9) = V- [(1 + 0wpe) Vo] + Py = pBfs (w? — i), (AS)
1 1
Mt = min (w’ M) 5 (A6)
¢:F1¢1+(1_F1)¢2a (¢:Ukao'wvﬁ)7 (A7)

where ¢ and p; denote dynamic and turbulent eddy viscosity, fgs« and fg represent free-shear and
vortex-stretching modification factors, ky and wgy are ambient turbulence values (
, ), and F1, F5 are blending functions connecting inner and outer boundary layer regions.

Model parameters are: o1 = 0.85, oo = 1.0, 0,1 = 0.5, 0,2 = 0.856, 51 = 0.075, B2 = 0.0828.
Following the Boussinesq hypothesis, the Reynolds stress tensor is modeled as:

0u; n &ﬂj
05(}]‘ &xl

2
TraNs = e ( > — = pkdij, (A8)

3

providing complete system closure.

Porous Media Treatment Vehicle cooling components (radiators, condensers) are modeled as
porous media due to their complex internal geometries that are too fine for individual meshing.
The void fraction €4 represents the geometry at coarse mesh scales, while momentum exchange is
captured through body force terms.
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Figure A6: Aerodynamic performance comparison of three rear configurations. (a) Drag coefficient (Cp)
versus Reynolds number (Re) with 95% confidence intervals (shaded regions). (b) Probability density distri-
butions of C'p values highlighting modal characteristics. Estateback (blue), notchback (orange), and fastback
(green) configurations are consistently color-coded across subfigures.

The governing equations for porous media become:

0
L) 5 (o) =0, (49)
ot
o ov _
% + V- (p\7®\7) =-Vp+V- (T + TRANS) + Fp, (A10)
where the flow resistance F), is given by:
Fp=—(P,+P[v]) v, (Al1)

with P, and P; representing viscous and inertial resistance tensors. The superficial velocity v
relates to the actual pore velocity v, through v = ¢4v,.

Further implementation details are available in the STAR-CCM+® Documentation.

C.5 Computational Infrastructure

Dataset generation utilized a high-performance computing cluster with 100 nodes, each equipped
with Intel® Xeon® Gold 6148 processors, consuming approximately 1,080,000 core-hours. Com-
putational efficiency was optimized through the AMG linear solver ( , ), which acceler-
ates convergence while reducing memory requirements.

C.6 Simulation Result

The aerodynamic behavior of three rear configurations (estateback, notchback, fastback) is quan-
tified in Figure A6, with comprehensive flow field visualizations including pressure distributions
(Figure A8), wall shear stress patterns (Figure A9), and velocity profiles (Figure A10).

Reynolds Number Dependencies Drag characteristics exhibit distinct Reynolds number trends
across configurations. The notchback configuration demonstrates consistent C'p reduction with in-
creasing Re throughout the observed range, while the fastback shows progressive C'p decrease
across its operational regime. In contrast, the estateback maintains relatively uniform C'p values
without significant monotonic variation, though with broader dispersion compared to other configu-
rations.

Statistical Characteristics The estateback exhibits bimodal density peaks at Cp = 0.31 and
0.35, contrasting with unimodal distributions of notchback (¢ = 0.28, IQR = 0.04) and fastback
(0 = 0.33). The notchback’s narrow interquartile range confirms superior aerodynamic consistency,
while the fastback’s right-skewed distribution reflects intermittent high-drag flow states.
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C.7 Computational Validation and Quality Assurance

Automated Quality Control A comprehensive quality assessment framework with specific accep-
tance criteria ensures dataset integrity. Automated filtering verifies that physical quantities remain
within engineering ranges: pressure values (volumetric and surface) and wall shear stress do not
exceed +2 x 10* Pa. Simulations exhibiting numerical anomalies are automatically excluded from
the dataset.

Convergence Criteria All cases undergo minimum 1,000 iteration steps with convergence deter-
mined by Cp stabilization within +1% over the final 100 iterations. A hybrid convergence metric
considers both relative C'p change and asymptotic behavior of solution residuals across continuity,
turbulence, and momentum equations. Cases with unresolved oscillatory behavior or non-physical
trends are identified through spectral analysis and excluded.

Mesh and Solution Quality Mesh quality verification ensures appropriate wall treatment applica-
tion, with all simulations maintaining wall y ™ values outside the buffer layer for accurate near-wall
flow resolution using blended wall functions. Meshes with significant skewness or aspect ratio de-
fects undergo refinement or exclusion. Final quality control discards simulations with the lowest 5%
composite quality scores, retaining only the top 60% of simulations based on computational quality
metrics for subsequent analysis.

C.8 Differences Between Simulation and Experiments

Geometric Configuration Differences The primary geometric differences between simulation
and experimental setups concentrate on wheel mounting systems and radiator representation. The
front wheels utilize MacPherson strut-type mounting assemblies, while the rear wheels employ solid
axle configurations. The experimental radiator geometry is unavailable in the CAD model and is
instead represented through porous media modeling with pressure drop characteristics derived from
hexagonal aluminum honeycomb and perforated sheet specifications.

The experimental model features five-spoke wheels with detailed tire tread patterns, symmetric mir-
ror assemblies, comprehensive chassis geometry, and three rear configurations: fastback, notchback,
and estateback. A precisely machined floor section maintains 4 mm wheel clearances, while detailed
engine bay components include integrated cooling systems and spotlights. Wheel assembly toler-
ances are maintained within +0.5 mm.

Physical Modeling Validation Table 2 presents drag coefficient comparison between experimen-
tal measurements and DrivAerStar simulation results. All three rear configuration coefficients
have been calibrated to approximate open-road operating conditions. The primary error sources in-
clude: flow regime complexities around the four-wheel assembly, pressure drop modeling through
radiator porosity representation, and inherent turbulence model limitations in capturing separation
and reattachment phenomena.

The validation demonstrates acceptable agreement between computational and experimental results,
with discrepancies primarily attributed to geometric simplifications in the cooling system represen-
tation and the challenge of accurately modeling complex wheel-ground interactions in the computa-
tional domain.

D Benchmark Setup and Evaluation

D.1 Evaluation Metrics

Relative L5 Loss (¢) The relative Lo error serves as the primary evaluation metric for flow field re-
gression across all experimental configurations. To ensure comparability between different physical
variables, each flow field variable ¢ (velocity, pressure, wall shear stress) undergoes standardization
using dataset-wide statistics:

b= ¢—M¢>7 (A12)
0¢
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Figure A7: Benchmark results visualization. Nine testing cases from the single-vehicle setup demonstrate
model performance across unique geometric configurations. Each row presents pressure fields (left) and wall
shear stress results (right), with ground truth CFD data, machine learning predictions, and difference maps
arranged from left to right within each prediction task.

where 14 and o4 represent the mean and standard deviation computed over the entire dataset. The
normalized relative Lo error is then defined as:

= M
|| Prrue |2
where qured and étrue denote standardized predicted and ground-truth flow fields, respectively. This

normalization eliminates scale discrepancies and aligns with established practices in industrial CFD
model evaluation.

) (A13)

Drag Coefficient Counts Error Automotive industry practice quantifies drag coefficient accuracy
using “counts error,” where 1 count equals 0.001 in C'p units. For example, if the simulated Cp is
0.300 and the predicted value is 0.320, the count error is 20 counts. This metric provides intuitive
error quantification directly relevant to vehicle development targets.

D.2 Benchmark Result

Table A2 presents a systematic performance comparison between Transolver, GNOT, and Point-
Net frameworks across aerodynamic prediction tasks, revealing critical insights into their respective
capabilities.

Single-Vehicle Specialization Transolver achieves superior performance in estateback-specific
training, recording the lowest validation losses at 1,200 samples: pressure (0.1996), WSS (0.7953),
and Cp (0.0266). The framework demonstrates strong scalability, with C'p prediction error de-
creasing 15.4% when expanding training data from 400 to 1,200 samples. GNOT shows substantial
improvement in high-data regimes, with 1,200-sample C'p validation loss (0.0357) approaching
Transolver’s performance, indicating enhanced learning capacity with sufficient data. PointNet ex-
hibits inconsistent convergence behavior, showing pressure validation loss degradation (3.1% in-
crease from 0.2991 to 0.2984) despite tripling training data. Single-vehicle benchmark results are
visualized in Figure A7.

Multi-Vehicle Generalization Transolver maintains robust performance across vehicle configu-
rations, showing minimal WSS validation loss degradation (2.9%) between single-vehicle (0.7953)
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Table A2: Training and validation loss comparison between Transolver and GNOT. Loss curves for pres-
sure, wall shear stress (WSS), and drag coefficient (Cp) prediction tasks. Training configuration: 500 samples
per vehicle type (estateback, fastback, notchback) for 1,500 total samples. All loss values are normalized by
initial conditions for comparative analysis.

(a) Transolver

Training Loss Validation Loss
Pressure WSS Cp Pressure WSS Cp

400xEstateback 0.2112  0.7841 0.0305 0.2173  0.7889 0.0314
Single-Vehicle ~ 800xEstateback 0.2050  0.7793 0.0296 0.2086  0.7837 0.0283
1200xEstateback ~ 0.1969  0.7881 0.0315 0.1996  0.7953 0.0266

133x3 Vehicles 0.2076  0.8050  0.0421 0.2194  0.8049  0.0375
Multi-Vehicle  266x3 Vehicles 0.1967  0.8130 0.0335 0.2075  0.8170 0.0335
400x3 Vehicles 0.1957  0.7973  0.0333  0.2074  0.7871  0.0286

Category Configuration

(b) GNOT

Training Loss Validation Loss
Pressure WSS Cbo Pressure WSS Cb

400xEstateback 0.3250  0.9619 0.1144 0.3250 0.9619 0.1144
Single-Vehicle = 800xEstateback 0.2185 0.7991 0.0463 0.2254 0.7986 0.0516
1200xEstateback ~ 0.1960  0.8135  0.0032  0.2087  0.8217  0.0357

133x3 Vehicles 0.2069  0.7802 0.0301  0.2122  0.7795 0.0344
Multi-Vehicle ~ 266x3 Vehicles 0.1968  0.7909 0.0284  0.2002  0.7920  0.0309
400x3 Vehicles 0.1954  0.8171 0.0282  0.1964  0.8124 0.0315

Category Configuration

(c) PointNet

Training Loss Validation Loss
Pressure WSS Cp Pressure WSS Cb

400xEstateback 0.2805  0.6460 0.0627  0.2991  0.6547  0.0502
Single-Vehicle ~ 800xEstateback 0.2549  0.6755 0.0376  0.2787  0.6769 0.0499
1200xEstateback ~ 0.2717  0.6157 0.0571  0.2984  0.6273  0.0436

133x3 Vehicles 02971  0.6716 0.0722  0.3201  0.6767 0.0536
Multi-Vehicle ~ 266x3 Vehicles 02731  0.6875 0.0585  0.3007 0.7041 0.0653
400x3 Vehicles 02872  0.6316 0.0589  0.3030 0.6560 0.0757

Category Configuration

and 400x3 multi-vehicle (0.7871) scenarios. GNOT demonstrates superior cross-vehicle general-
ization, with 400x3 multi-vehicle C'p validation loss (0.0315) outperforming single-vehicle base-
line (0.0357) by 11.8%, suggesting inherent architectural advantages for heterogeneous geometries.
PointNet struggles with multi-task learning, exhibiting 41.7% higher average WSS validation loss
compared to Transolver in equivalent configurations.

Task-Specific Analysis Wall shear stress prediction presents the greatest challenge across all
frameworks, with the highest relative errors observed (Transolver: 0.7953, GNOT: 0.8124, Point-
Net: 0.6560 at 400x3 validation). Drag coefficient predictions reveal framework-dependent charac-
teristics: Transolver achieves ultra-low errors (0.0266) through specialized training, while GNOT’s
physics-informed architecture enables superior error consistency (£6.2% variation) across vehicle
configurations.

Sample Efficiency Analysis Transolver reaches 90% peak performance with 800 samples, show-
ing marginal improvement (j2%) at 1,200 samples. GNOT requires 1,200 samples for comparable
accuracy, while PointNet exhibits negative scaling beyond 800 samples, with 1,200-sample training
yielding 4.3% higher pressure loss than the 800-sample case, indicating architectural limitations in
leveraging large datasets.
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D.3 Scaling Analysis with Training Sample Size

We conducted comprehensive scaling experiments using Transolver in multi-vehicle configurations
to assess training dataset size impact on drag coefficient prediction. The analysis utilized 12,000 total
samples partitioned into training subsets of varying sizes, with 150 independently generated samples
for testing. This revised data splitting strategy ensures robust evaluation, with minor discrepancies
from initial results attributed to refined subset partitioning. Validation loss and relative improvement
(calculated as Improvement = W x 100% against the 400-sample baseline) are presented
in Table 3.

Results demonstrate consistent C'p validation loss reduction with increased training data: doubling
samples from 400 to 800 reduces loss by 10.67%, scaling to 1,200 samples achieves 23.73% reduc-
tion, and the full 12,000-sample dataset delivers 29.07% total improvement. This trend confirms
Transolver’s effective data scaling properties, where larger training subsets directly translate to en-
hanced Cp prediction accuracy. The substantial accuracy gains achieved with the 12,000-sample
dataset provide meaningful improvements for practical CFD applications, where marginal C', pre-
diction error reductions drive significant advances in vehicle aerodynamic optimization workflows.
Raw experimental data, including detailed loss curves and test sample distributions, are provided in
supplementary materials to ensure reproducibility.

E Data Sources of Automotive CFD Datasets

The comparative metrics presented in Table 1 were compiled from multiple sources. For the Dri-
vAerNet++ dataset ( , ), the wall y* range and the average Cp precision were
derived from the published simulation cases, while the wind tunnel error was extracted from Table 8
of the original paper. For the DrivAerML dataset ( , ), the wall y+ range was not
reported in the available literature; the average C'p precision was estimated from Figure 13(a) of the
original paper, and the wind tunnel error was obtained from Table 1 in its appendix.

F Experimental Setting and Details

Implementation Details To ensure experimental reproducibility, all random number genera-
tors were initialized with a fixed seed of 42. Models were trained and evaluated on the
DrivAerStar dataset under two configurations: 1 Vehicle (single configuration) and 3 Vehicle
(multi-configuration). To assess data efficiency, the training set size was varied across 400, 800, and
1,200 samples, while the validation and test sets were fixed at 150 samples each. All models were
trained from scratch for up to 500 epochs to ensure convergence. Training was conducted using the
Adam optimizer with an initial learning rate of 0.001, adjusted by a cosine annealing scheduler, and
a batch size of 4 and 1 for training and validation, respectively.

Network Architecture: Transolver The Transolver architecture ( , ) consists of 4
encoding layers, each implementing multi-head attention with 4 heads. The model uses a hidden di-
mension of 64 and maintains an MLP ratio of 1 in its feed-forward networks. The network processes
7-dimensional spatial input data and generates 4-dimensional outputs. The architecture incorporates
5 downsampling operations, utilizes a reference size of 8, and processes 16 data slices in parallel.
During training, gradient clipping with a maximum norm of 0.1 was applied to stabilize optimiza-
tion, while a weight decay of 0.0001 was used for regularization.

Network Architecture: PointNet The PointNet architecture ( , ) processes irregular
mesh data through a transformation network (T-Net) and hierarchical feature extraction. The in-
put transformation network generates a 7 x 7 transformation matrix using three 1D convolutional
layers with channel dimensions of 64, 128, and 256. The main network employs sequential 1D con-
volutional layers with batch normalization and ReLU activation, progressively increasing feature
dimensions from 64 to 256 channels. A residual connection bridges the initial 64-channel features
to the final representation, while point-wise fully connected layers map the 256-dimensional features
to 4-dimensional outputs.
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Network Architecture: GNOT The GNOT architecture ( , ) processes irregu-
lar mesh data using neural operator principles. The input transformation network processes 7-
dimensional features through three 1D convolutional layers (64, 128, and 256 channels), followed
by max pooling and fully connected layers to generate transformation matrices. The main net-
work consists of sequential 1D convolutional layers with batch normalization and ReL.U activation,
progressively increasing feature dimensions from 64 to 128 and finally to 256 channels. A residual
connection via 1x1 convolution bridges the initial 64-channel features to the final 256-channel repre-
sentation. Point-wise fully connected layers conclude the architecture by mapping 256-dimensional
features to the 4-dimensional output space.

G Limitations and Future Work

Geometric Representation While our dataset employs 20 deformation parameters, this param-
eterization remains insufficient to fully characterize complete vehicle geometries. The simplified
geometric representation limits the model’s ability to capture fine-scale aerodynamic features that
significantly impact flow behavior in real-world applications.

Simulation Fidelity Although our simulations incorporate many industrial practices, they cannot
capture all real-world complexities, including dynamic effects, environmental conditions, and man-
ufacturing tolerances. The steady-state RANS approach, while computationally efficient, may not
fully resolve transient flow phenomena critical for certain aerodynamic assessments.

Model Performance Validation Our experiments confirm that data-driven scaling laws remain
effective, with model performance improving consistently as training samples increase. However,
the observed improvements may plateau beyond current dataset sizes, requiring investigation of
alternative approaches for continued accuracy gains.

Future Directions Future work will focus on dataset enhancement through expanded geometric
parameterization and foundation model development for industrial applications. We plan to explore
physics-informed learning methods and data assimilation techniques incorporating wind tunnel ex-
perimental data to improve model performance in limited-data scenarios. Additionally, investigation
of multi-fidelity approaches combining RANS, LES, and experimental data may enhance prediction
accuracy while maintaining computational efficiency for practical automotive design workflows.
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Figure A10: DrivAerStar simulation results: velocity field distributions (m/s)
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