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A. Extended Derivations and Further
Discussion

A.1. Derivation of Conditional EBMs

We first define the marginal EBMs at each diffusion step:
pα(zt)=

1

Zα,t
exp(Fα(zt, t))p0(zt), t=T −1

pα(zt)=
1

Zα,t
exp(Fα(zt, t)), t=0, 1, ..., T −2

(A1)
where the marginal energy term is in a log-sum-exponential
form Fα(zt, t)= log

∑
y exp(⟨y, fα(zt, t)⟩); it serves to

aggregate the energy score from each category. Of note,
the marginal EBM corresponding with the last diffusion
step has a slightly different definition. We set this term
as exponential tilting of a non-informative Gaussian prior
p0(zt) which helps to stabilize training in practice.

Recall that zt+1 =
√
1−σ2

t+1zt+σt+1ϵt+1. Let z̃t=√
1−σ2

t+1zt. For t=0, 1, ..., T −2, we have

pα(z̃t|zt+1)=
pα(z̃t)p(zt+1|z̃t)

pα(zt+1)

=
1

Z̃α,t

exp(Fα(z̃t, t))

pα(zt+1)
exp

(
− 1

2σ2
t+1

||z̃t−zt+1||2
)

=
1

Z̃α,t(zt+1)
exp

(
Fα(z̃t, t)−

1

2σ2
t+1

||z̃t−zt+1||2
)
,

(A2)
where Z̃α,t=(2πσ2

t+1)
n
2 Zα,t; we slightly abuse the nota-

tion and use p(zt+1|z̃t) to represent the forward transition
q(zt+1|zt) defined in Eq. (4) for notation consistency.

The diffused samples at time step T are close to Gaussian
white noise; pα(z̃T−1|zT ) therefore falls to its marginal
distribution p(z̃T−1) defined in Eq. (A1).

A.2. Derivation of the ELBO

Recall that the ELBO in SVEBM is

ELBOθ,ϕ= log pθ(x)−DKL(qϕ(z|x)∥pθ(z|x))
=Eqϕ(z|x)[log pβ(x|z)]−DKL(qϕ(z|x)∥pα(z))
=Eqϕ(z|x) [log pβ(x|z)− log qϕ(z|x)+log pα(z)] ,

(A3)
where DKL denotes the Kullback-Leibler divergence. Let
us consider the full trajectory of the perturbed samples
z0, z1, ..., zT . The above equation can be written as

ELBOθ,ϕ=Eqϕ(z0|x) [log pβ(x|z0)− log qϕ(z0|x)]

+Eqϕ(z0|x)

[
log

∫
z1:T

pα(z0:T )dz1:T

]
,

(A4)

where the last term is further lower-bounded by introducing
the forward trajectory distribution; the inequality holds by
applying Jensen’s Inequality:

Eqϕ(z0|x)

[
log

∫
z1:T

pα(z0:T )dz1:T

]
= Eqϕ(z0|x)

[
log

∫
z1:T

q(z1:T |z0)
pα(z0:T )

q(z1:T |z0)
dz1:T

]
≥ Eqϕ(z0|x)

[∫
z1:T

q(z1:T |z0) log
pα(z0:T )

q(z1:T |z0)
dz1:T

]
= Eqϕ(z0|x),q(z1:T |z0)

[
log

pα(z0:T )

q(z1:T |z0)

]
.

(A5)
Further, we can decompose the joint distribution of forward
and backward trajectories as

Eqϕ(z0|x),q(z1:T |z0)

[
log

pα(z0:T )

q(z1:T |z0)

]
=

Eqϕ(z0|x),q(z1:T |z0)

[
log p(zT )+

T−1∑
t=0

log
pα(zt|zt+1)

q(zt+1|zt)

]
=

E

[
log p(zT )+

T−1∑
t=0

log pα(zt|zt+1)

]
+

T−1∑
t=0

H(zt+1|zt),

(A6)
where p(zT ) is standard Gaussian distribution; E is the ab-
breviation of Eqϕ(z0|x),q(z1:T |z0). H(zt+1|zt), t=0, ..., 1 is
the conditional entropy under the forward trajectory distri-
bution. We obtain zt by sampling z̃t from pα(z̃t|zt+1) and

then applying zt= z̃t/
√

1−σ2
t+1; the reverse trajectory in

our model is primarily defined by pα(z̃t|zt+1) for t> 0. We
use [zt|zt+1] to represent this process in the following sec-
tions; we may interchangeably use the notation of z̃t and zt
for simplicity.

Note that the entropies can be analytically computed and
do not involve learnable parameters. The joint training
of inference, prior and generation models can be largely
reduced to finding the agreement of the forward and reverse
Markov transitions defined by qϕ and pθ respectively.

A.3. Detailed Discussion of Symbol Coupling

In Sec. 2, we briefly describe how to introduce the symbolic
one-hot vector y. Since only z0 is connected with y, we can
first define the joint prior pα(y, z0) as in Eq. (A1) by substi-
tuting Fα(z̃0, 0) with ⟨y, fα(z̃0, 0)⟩. Then the conditional
symbol-vector coupling joint distribution follows as

pα(y, z0|z1)=
1

Z̃α,t=0

exp (⟨y, fα(z̃0, 0)⟩)

exp

(
− 1

2σ2
1

||z̃0−z1||2
)
.

(A7)



Latent Diffusion Energy-Based Model for Interpretable Text Modeling

Note that pα(y, z0|z1)= pα(y|z0)pα(z0|z1), i.e., z0 is suf-
ficient for inferring y in this formulation:

pα(y|z0, z1)=
pα(y, z0|z1)
pα(z0|z1)

=
exp (⟨y, fα(z̃0, 0)⟩)
exp (Fα(z̃0, 0))

,

(A8)

so that given z0,

pα(y|z0)∝ exp(⟨y, fα(z̃0, 0)⟩). (A9)

It similarly becomes a softmax classifier where fα(z̃0, 0)
provides the logit scores for the K categories.

A.4. Derivation of the Information Bottleneck

We first define the mutual information term between z0
and y. Consider the joint distribution of x, z0 and y,
π(y, z0,x)= pα(y|z0)qϕ(z0|x)qdata(x); the mutual infor-
mation I(z0,y) defined under π then follows as:

I(z0,y)=H(y)−H(y|z0)

=−
∑
y

q(y) log q(y)

+Eqϕ(z0)

∑
y

pα(y|z0) log pα(y|z0),

(A10)

where q(y)=Eqϕ(z0)[pα(y|z0)]; pα(y|z0) is the softmax
probability over K categories in Eq. (A9).

We then show how to obtain the quantities defined in
Sec. 3.2. For the marginal distribution of z0:

qϕ(z0)=

∫
x,z1:T

Qϕ(x, z0:T )dxdz1:T

=Eqdata(x)[qϕ(z0|x)].
(A11)

The entropy and conditional entropy of z0 are thus

H(z0)=−Eqϕ(z0)[log qϕ(z0)];

H(z0|x)=−EQϕ(x,z0)[log qϕ(z0|x)].
(A12)

Taking together, we can then decompose the KL-Divergence,
DKL(Qϕ∥Pθ), in Eq. (8) as:

DKL(Qϕ∥Pθ)=EQϕ
[qdata(x)]+EQϕ

[qϕ(z0:T |x)]
−EQϕ

[pα(z0:T )]−EQϕ
[pβ(x|z0)] ,

(A13)
and further as:

−H(x)+

T−1∑
t=0

H(zt+1|zt)−H(z0|x)+H(z0)−H(z0)

−EQϕ
[pα(z0:T )]−EQϕ

[pβ(x|z0)] ,
(A14)

by plugging in H(z0)−H(z0)= 0. Rearranging Eq. (A14),
we can obtain

DKL(Qϕ∥Pθ)= C−EQϕ
[pβ(x|z0)]

+DKL(qϕ(z0)∥pα(z0:T ))+I(x, z0),
(A15)

which leads to our result in Eq. (9).

A.5. Derivation of the Learning Gradient

Recall that we derive the extended version of Eq. (6) in
Appx. A.2. To calculate the gradient of α, we have

∇α ELBODiff,θ,ϕ=∇αE

[
T−1∑
t=0

log pα(zt|zt+1)

]

=E

[
T−1∑
t=0

∇α log pα(zt|zt+1)

]
,

(A16)
where E is the abbreviation of Eqϕ(z0|x),q(z1:T |z0); in prac-
tice, we use Monte-Carlo average to approximate the ex-
pectation. We next examine the learning gradient for each
diffusion step t.

∇α log pα(zt|zt+1)=∇αFα(z̃t, t)−∇αZ̃α,t(zt+1),
(A17)

where the quadratic term 1
2σ2

t+1
||z̃t−zt+1||2 is not related

to α and gets cancelled. According to the definition of the
partition function in Sec. 2, we can similarly derive

∇αZ̃α,t(zt+1)=Epα(z̃t|zt+1) [∇αFα(z̃t, t)] , (A18)

as in Pang et al. (2020a). For the prior model, we thus have

∇α ELBOt=Eqϕ(z̃t,z0|x)[∇αFα(z̃t, t)]

−Eqϕ(zt+1,z0|x),pα(z̃t|zt+1)[∇αFα(z̃t, t)],
(A19)

where qϕ(z̃t, z0|x)= q(z̃t|z0)qϕ(z0|x). Note that we can
sample zt, t > 0 directly from

q(zt|z0)=N (zt;
√
γ̄tzt−1, (1− γ̄t)I), (A20)

by merging the Gaussian noises during forward diffusion
process; we denote γt=1−σ2

t and γ̄t=
∏t
i=1 γt.

For the encoder and decoder, based on Eq. (6) and Eq. (A6),
we have

∇ψ ELBO=∇ψEqϕ(z0|x)[log pβ(x|z0)− log qϕ(z0|x)]

−∇ϕEqϕ(z0:T |x)

[
log p(zT )+

T−1∑
t=0

log pα(zt|zt+1)

]
,

(A21)
where the summation of energy terms provides extra guid-
ance for the optimization of encoder.
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Table A1. Network architecture for the LDEBM prior. N is set
to 12 for all the experiments.

Layers Output size Note

Time Embedding

Input: t 1
Index of

diffusion step
Sin. embedding 200

Linear, LReLU 200
negative_slope

0.2
Linear 200

Input Embedding
Input: z dlat

Linear, LReLU 200
negative_slope

0.2
Linear 200

Context Embedding
(for response generation only)

Input: zctx 512 ctx. embedding

Linear, LReLU 200
negative_slope

0.2
Linear 200

LDEBM Prior

Input: z, t
∗zctx

1, dlat
512

optional zctx

Embedding 200
Embedding of

each input

Concatenate 400
600

w/o ctx.
w/ ctx.

LReLU, Linear 200
negative_slope

0.2

N ResBlocks 200
LReLU, Linear

+ Input
LReLU, Linear K K class logits
Log-Sum-Exp 1 energy score

B. Extra Experiment Details and Discussion
B.1. Network Architecture and Hyperparameters

We provide detailed network architecture for the latent space
model of this work in Tab. A1; we adopt the same archi-
tecture throughout the experiments. Spectral normalization
(Miyato et al., 2018) is used to regularize parameters in
linear layers. The encoder and decoder in all models are
the same as in Pang & Wu (2021), implemented with a
single-layer GRU with a hidden size of 512. The key hyper-
parameters of LDEBM for each dataset are listed in Tab. A2.
Of note, we use the same dimension of the latent space as
in (Pang & Wu, 2021) for a fair comparison.

λ1 is the hyperparameter that reweights the term in Eq. (A6);
it generally controls how fast qϕ and pθ run towards each
other. λ2 refers to the hyperparameter in Eq. (9); it controls
the trade-off between the compressivity of z0 about x and
its expressivity to y. λ3 controls the weight of classification
loss mentioned in Sec. 3.3; recall that we use pseudo-label ŷ
inferred by the geometric clustering algorithm or the ground-
truth label y to supervise pα(y|z0) in our modeling. For
controllable generation and semi-supervised classification,

Table A2. Hyperparameters of LDEBM. DD-CLS presents the
set of hyperparameters used in unsupervised clustering on DD
dataset. DD-GEN presents the set of hyperparameters used in
conditional response generation on DD dataset.

DATASET dlat K λ1 λ2 λ3

2D GAUSSIAN 2 16 1 0.05 0.05
2D PINWHEEL 2 10 1 0.05 0.05
PTB 40 20 0.1 0.05 0.05
JERICHO 40 20 0.1 0.05 0.05
DD-CLS 32 125 0.01 0.05 0.5
DD-GEN 32 125 1 0.05 0.05
SMD 32 125 10 10 5
YELP 40 2 50 50 200
AGNEWS 20 4 1e-3 5 200

we find it important to have a larger weight on the classifi-
cation loss so that the model is forced to capture the major
modes of the data.

For optimization, we use Adam optimizer (Kingma & Ba,
2014) with β1 =0.9 and β2 =0.999 for all the experiments.
On all the datasets but 2D synthetic datasets and AGNews
dataset, we use a batch size of 128 and a constant learning
rate of 1e−3 for encoder and decoder without weight decay.
For LDEBM, we use a constant learning rate of 1e−4. We
use a larger batch size of 1000 on 2D synthetic datasets.
On the AGNews dataset, we use the same set of hyperpa-
rameters as in Pang & Wu (2021) for optimization. The
batch size is set to 200; the initial learning rate is 1e−4
for encoder and decoder, and 1e−5 for LDEBM. Learning
rates are exponentially decayed with a decay rate of 0.998
for each model. Encoder and LDEBM have a weight decay
rate of 2e−3 and 1e−3, respectively.

B.2. Experiment Settings and Baselines

Experiment settings For generative modeling, following
previous methods (Shi et al., 2020; Pang & Wu, 2021), the
NLL term is computed with importance sampling (Burda
et al., 2016) using 500 importance samples. To compute
rPPL, we set the generated sample size as 40, 000, which
is the same size as PTB training set. We recruit ASGD
Weight-Dropped LSTM (Merity et al., 2018) to compute
rPPL as in previous works.

In terms of conditional response generation, for word-
embedding-based evaluation on SMD and DD, we use the
publicly available GloVe (Pennington et al., 2014) word
embeddings of 300 dimension trained on 840B tokens, and
report the score from 1 response per context. We use a
context window size of 5 during training and evaluation.

The maximum length of each sentence is set to 40 words
for most datasets and 70 words for the JerichoWorld dataset.
On JerichoWorld dataset, we extract the description of each
state as the text data.
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Baselines On PTB, DD and SMD, our model is compared
with the following baselines: (1) RNNLM (Mikolov et al.,
2010), the language model implemented with GRU (Cho
et al., 2014); (2) AE (Vincent et al., 2010), the determinis-
tic auto-encoder which has no regularization to the latent
space; (3) DAE, the AE with a discrete latent space; (4) VAE
(Kingma & Welling, 2013), the vanilla VAE with a continu-
ous latent space and a non-informative Gaussian prior; (5)
DVAE, the VAE with a discrete latent space; (6) DI-VAE
(Zhao et al., 2018b), a DVAE variant with a mutual infor-
mation term between the observed piece of text x and its in-
ferred latent variable z; (7) semi-VAE (Kingma et al., 2014),
the semi-supervised VAE model with independent discrete
and continuous latent variables; (8) GM-VAE, the VAE
with a Gaussian mixture prior; (9) DGM-VAE (Shi et al.,
2020), the GM-VAE with a dispersion term that avoids the
mode-collapse of Gaussian mixture prior; (10) semi-VAE
+ I(x,y), GM-VAE + I(x,y), DGM-VAE + I(x,y), are
the same models as (7), (8), and (9) respectively, but with
a mutual information term between x and y computed us-
ing separate inference networks for y and z. We compare
with the close competitors (11) SVEBM, the symbol-vector
coupling prior model and (12) SVEBM-IB, SVEBM with
regularization based on information-bottleneck.

On Yelp dataset, we additionally include text conditional
GAN (Subramanian et al., 2018) as a baseline for control-
lable generation. On AGNews dataset, we further com-
pare our model to VAMPIRE (Gururangan et al., 2019),
a VAE-based semi-supervised text learning model. Other
baselines include its supervised learning variants: (1) the
model trained with Glove embedding pre-trained on 840
billion words (Glove-OD); (2) the model trained with Glove
embedding on in-domain unlabeled data (Glove-ID). We
also include more recent baselines such as Hard EM and
CatVAE (Jin et al., 2020) that improve over VAMPIRE.

B.3. Extra Details for Experiments

More ablation study We conduct additional experiments
on both PTB and DD datasets to inspect the contribution
of the proposed techniques. In Sec. 4.1, we have reported
results on PTB and datasets of OURS W/O GC which rep-
resents the model with Information Bottleneck but without
Geometric Clustering (GC); OURS denotes the full model.

We further conduct experiments on the proposed model
without using IB or GC. We observe that the proposed
model using only diffusion-based sampling scheme has a
rPPL of 166.26, BLEU of 11.30, wKL of 0.07 and NLL of
80.76 on PTB; it has a MI of 0.01, BLEU of 19.28, Act. of
0.12 and Emo. of 0.06 on DD, which is better than SVEBMs
(please see Tabs. 1 and 3 in Sec. 4.1).

We also add GC to SVEBM (denoted as SVE-IB W/ GC).
We find that SVE-IB W/ GC does perform better compared

with SVE-IB, showing a rPPL of 179.95, BLEU of 10.08,
wKL of 0.15 and NLL of 93.28 on PTB; it has a MI of 2.88,
BLEU of 11.75, Act. of 0.61 and Emo. of 0.60 on DD.
Notably, SVE-IB W/ GC is still inferior to LDEBMs.

In summary, we think these additional experiments (1) em-
phasize the importance of our diffusion-based modeling
approach, and (2) demonstrate the effectiveness of GC as
additional regularization.

2D synthetic data We provide the full evolution of
SVEBM-IB and our models as visualized in Fig. A2.
Though SVEBM-IB can capture some regularities of the
data in the early stages of training, the model is prone to
collapse due to the degenerated sampling quality. This fea-
tures an exploding KL-term and leads to poor performance
on generation. Our preliminary experiments indicate that
common deep learning heuristics for improving the model
capacity barely help. These include but are not limited to
increasing the number of parameters in SVEBM, i.e., using
larger models, and adopting deliberately designed activation
functions or normalization modules. LDEBM w/o geomet-
ric clustering has a better sampling quality and effectively
mitigates the instability in training. However, the mode cov-
erage is not satisfying in data space; the structure is unclear
in latent space. In contrast, LDEBM w/ geometric clus-
tering shows superior generation quality with better mode
coverage. It demonstrates a better-structured latent space.

Sentence completion To perform sentence completion,
we adopt a two-stage training scheme. We first train the
LDEBM with inference, prior and generation models on
the JerichoWorld dataset. After the first-stage training, the
parameters of prior, inference and generation models are
fixed. We then train a shallow MLP in the latent space to
project the inferred posterior z0 to a disentangled space; the
variables in the projected z0 can be grouped as: (a) the rep-
resentation of observable words ẑobs in the input sentence
and (b) the representation of unknown words ẑunk. Condi-
tional sampling in the latent space then refers to updating
ẑunk based on the fixed ẑobs by running Langevin dynamics
guided by the latent space model.

We mask half of the words in the sentences with <unk>
token to prepare the inputs. In the second stage of training,
we supervise the MLP by minimizing the reconstruction
error between only the observable words of the input the
sentence and the corresponding outputs of the model.

Sentence sentiment control Recall that in our formula-
tion only z0 is connected to y. We therefore condition only
the final reverse diffusion step [z0|z1] on y when performing
controllable generation, i.e., using y to guide the generation
only when t=0 in Alg. 2. This can be a bit counter-intuitive
since no label information is injected in previous reverse
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Figure A1. Visualization of pα(y|zt) over t. pα(y|zt) is con-
stantly around the probability of 0.5 over t.

steps. Theoretically, y and z1:T are independent given z0
in our formulation; however, we empirically observe that
y and zt for t> 0 are nearly independent even marginally
after we integrating out z0:t−1 in our model. In other words,
pα(y|zt), t > 0 are in general non-informative since adding
noise in the latent space could be much more corrupting
than adding noise in the data space. The model learns to
enjoy the less multi-modal energy landscape in previous
reverse steps; it then seeks the given mode only in the most
informative final reverse step. We examine pα(y|zt), t > 0
for the model trained on Yelp dataset by marginalizing out
zt−1 of pα(y, zt−1|zt), t > 0. For example, for t=1, we
may calculate

pα(y|z1)=
∫
z0

pα(y|z0)pα(z0|z1)dz0

=Epα(z0|z1) [pα(y|z0)]

≈ 1

M

M∑
i=1

pα(y|z(i)0 ).

(A22)

See Fig. A1 for the visualization of pα(y|zt) over t.

A more intuitive method is to use the data label y to super-
vise each [y, zt|zt+1], so that we can propagate the label
information through the whole trajectory. Given z0, y and
z1:T are independent. But if we marginalize out z0, y will
depend on z1. Similarly, if we continue to marginalize out
z1, y will depend on z2. Repeating this process results in
pα(y|zt) for each t after integrating out z0:t−1. Supervising
pα(y|zt), t > 0 using y therefore effectively encodes the
label information into the whole trajectory.

While the marginalization can be difficult, we may approxi-
mate it by learning the amortized version of pα(y|zt), t > 0
as pα(y, zt−1 =µϕ,t−1|zt), t > 0, where µϕ,t is the pos-
terior mean of zt. We may therefore circumvent the in-
tractable integration in practice and guide the whole trajec-
tory for controllable generation.
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(a) SVEBM-IB Gaussian (b) SVEBM-IB Pinwheel

(c) LDEBM w/o PL Gaussian (d) LDEBM w/o PL Pinwheel

(e) LDEBM Gaussian (f) LDEBM Pinwheel

Figure A2. Full evolution of SVEBM-IB and our models. In each sub-figure, we provide the typical states of the model trained on the
corresponding dataset, sequentially from the top row to the bottom row.


