

A Minimalist Dataset for Systematic Generalization of Perception, Syntax, and Semantics

Qing Li, Siyuan Huang, Yining Hong, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu

(a) main concepts

syntax

number

parenthesis

op1

op]

op2 op2 semantics

0..5..9

none

 $i+j \\ \max(0,i-j)$

 $i \times j$

 $\operatorname{ceil}(i \div j)$

Semantics

Extra.

 \checkmark

 \checkmark

Inter.

V

perception

0.5.9

Syntax

Extra.

1

Inter.

 \checkmark

V

Can you decipher these ancient Egyptian signs?

へ気 合い気 ee → 60 つ ご 通 due → 100 い つ 通 u d → 12 の 取 の d 声 取 d → 4	ouうo台⊿⊿ → 18 U∽⊿uう台台 → 16 U&Пеஊ⊿ஊе⊿ → 41 ணuவிடுகபு → 4
$figerade mean \to 4$	ஊபฏி£ி⇔£⊿ → 4
⊠ ஊ $_{\Box}$ o n e e → 26	၀ပဂည်းခ $\rightarrow 17$

Three-level Concept Learning and Generalization

syntax Perception: seen image \rightarrow unseen image 45 (Syntax: perception short expr. \rightarrow long expr. 1+1=22×3=6 7-2=5 Semantics: 6×9=54 31-7=24 Small value \rightarrow large value 17+23=40 Generalize semantics

Our contributions:

- We present HINT, a minimal yet comprehensive benchmark for systematic generalization w.r.t. perception, syntax, and semantics.
- Current neural networks, including Transformer and LLMs, struggle on HINT and the gap to human performance is considerable.
- Simply increasing model and dataset size does NOT lead to better generalization in HINT.

Code & dataset: <u>https://liqing-ustc.github.io/HINT</u>

HINT: <u>Handwritten arithmetic with Int</u>egers

Input: handwritten expression	Output: result	
2X5÷9	2	05
5X5+(3-0-2)	32	() + -
4×(3+9)-7-10-5) 41	× ÷

Train and Evaluation

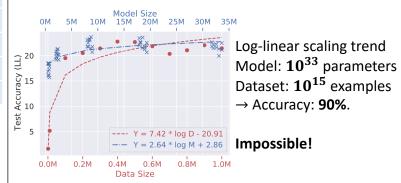
 $D_{\text{train}} \subset \mathcal{T}_{\text{train}} = \{(x, y) : |x| \leq 10, \max(v) \leq 100\},\$

Generalization: Interpolation & Extrapolation	Perce
$D_{\text{test}} = I \cup SS \cup LS \cup SL \cup LL$, where	ption
$\mathrm{I} \subset D_{\mathrm{train}},$	\checkmark
$ extsf{SS} \subset \mathcal{T}_{ extsf{train}} ackslash D_{ extsf{train}},$	\checkmark
$LS \subset \{(x,y): x > 10, \max(v) \leqslant 100\}$	\checkmark
$\mathrm{SL} \subset \{(x,y): x \leqslant 10, \max(v) > 100\}$	\checkmark
$\mathrm{LL} \subset \{(x,y): x > 10, \max(v) > 100\}$	\checkmark

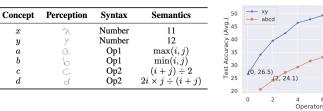
Examples from HINT

Train		$2\times 5 \div 9 2 $ (9-9)×(3-4)-1×(0+3-(6-(2-2÷2))) 0
		5X5+(9-0-2) 32 4×(3+9)-7-(D-5) 41
	I	1=41 1×(2=5)×(8=8=6)0 6=4+(0=(6+0=(6+0)×1))+(9+4)15
	SS	1+3:4 2 3X(7×1)+(8+4)+4×3 66 4+(D-(7+7+7+6))×4-0 4
	LS	3×(8×(8×1)+0÷9)192 5×(3:4×9)+(2-5)×(7×(6+5))135
		2X(3X(3÷6+6X(3×4×6÷(1×6)))+O÷≥) 438
Test	SL	(6×5-0)÷((4+3+5)÷9)+(3-((2-(2+(3×7-8÷9)))/4-9)) 18
		$6-3 \div (9 \times (9 \div (4-(4-7)))) \div (1 \div (7 \times 2 \div 6 \div 8))$ 6
		$(7+3)/(6-6\times(0\times(6+1)))-(3\times(-6-4)(4-3))\times(9\times3)$ 2
	LL	(6+)×(+2:4+(+++-0+3)×8-(1+3×8))×((0+(2×8-0)/3)+(8+9))174
		(3+(8+(4-7)(++8))×(8+4-(4-(6+5)+6))))÷(7+5×1×0)+5 1
		7X(8÷(1X(7÷+))+(1+>))X10+9-5÷[8+4÷19×6)))+18-(9-8+3))620

Experimental Results


Image Inputs

Model	Variant	I	SS	LS	SL	LL	Avg.
GRU	w/o att	61.3±1.4	53.3 ± 1.7	30.5 ± 1.2	9.2 ± 0.2	11.9 ± 0.5	33.2±0.9
	w/ att	66.7 ± 2.0	58.7 ± 2.2	33.1 ± 2.7	9.4 ± 0.3	12.8 ± 1.0	35.9 ± 1.6
LSTM	w/o att	80.0 ± 5.7	76.2 ± 7.4	55.7 ± 8.2	10.9 ± 0.6	19.8 ± 2.6	48.6 ± 4.9
LSIM	w/ att	83.9 ± 0.9	79.7 ± 0.8	62.0 ± 2.5	11.2 ± 0.1	21.0 ± 0.8	51.5 ± 1.0
	vanilla	20.9 ± 0.4	9.3±0.2	5.7 ± 0.3	1.5 ± 0.3	2.9 ± 0.5	8.3±0.3
Transformer	rel.	86.2 ± 0.9	83.1 ± 1.3	60.1 ± 2.3	10.9 ± 0.2	19.4 ± 0.5	51.7 ± 1.0
	rel. uni.	88.4±1.3	86.0±1.3	62.5 <u>+</u> 4.1	10.9 ± 0.2	$19.0 {\pm} 1.0$	53.1 ± 1.6


Symbol Inputs

Model	Variant	I	SS	LS	SL	LL	Avg.
GRU	w/o att	74.9 ± 1.6	$68.1 {\pm} 0.5$	42.1 ± 1.9	$10.5 {\pm} 0.2$	14.0 ± 0.8	41.3±0.6
GRU	w/ att	76.2 ± 0.6	69.5 <u>±</u> 0.6	42.8 ± 1.5	10.5 ± 0.2	15.1 ± 1.2	42.5 ± 0.7
LSTM	w/o att	84.3 ± 5.2	79.6±6.0	63.7 ± 6.1	11.7 ± 0.3	22.1 ± 1.4	52.3 ± 3.8
LSTW	w/ att	92.9 ± 1.4	90.9 ± 1.1	74.9 ± 1.5	12.1 ± 0.2	24.3 ± 0.3	58.9 ± 0.7
	vanilla	93.9±0.3	91.0±0.5	33.2 ± 1.2	11.5 ± 0.1	11.5 ± 0.7	47.4 ± 0.4
Transformer	rel.	96.6 ± 0.3	95.1 ± 0.4	72.1 ± 1.5	$11.8 {\pm} 0.2$	22.3 ± 0.6	59.4 ± 0.5
	rel. uni.	98.0±0.3	96.8±0.6	78.2±2.9	11.7 ± 0.3	22.4 ± 1.1	61.5±0.9
GPT-3	0-shot	19.0	9.0	3.0	10.0	2.0	8.6
Gr 1-5	0-CoT	42.0	36.0	5.0	49.0	6.0	27.6

Scaling laws w.r.t. model and dataset

Few-shot Learning and Generalization

