

Image Feature Consensus with Deep Functional Maps

¹Institute for AI, Peking University, China ²Department of Computer Science, Stanford University, USA ³PKU-WUHAN Institute for Artificial Intelligence, China

$$T_F(f) = T_F\left(\sum_i a_i \varphi_i^{\mathcal{M}}\right) = \sum_i a_i T_F(\varphi_i^{\mathcal{M}})$$

$$T_F(f) = \sum_i a_i \sum_j c_{ij} \varphi_j^{\mathcal{N}} = \sum_h \sum_i a_i c_{ij} \varphi_j^{\mathcal{N}}$$

20x20

submatrix

spectral domain derived from one feature set to achieve a *consensus* with the other set. **Right:** With a better understanding of the global image structure, our method produces smoother and more accurate correspondences in a zero-shot manner.

Xinle Cheng¹, Congyue Deng², Adam W. Harley², Yixin Zhu^{1,3}, Leonidas Guibas²

Dense Correspondence

Keypoint Correspondences (Spair-71k)

Main Results on TSS

Setting	Method	FG3DCar	JODS	Pascal	Avg.
Supervised	SCOT [23]	95.3	81.3	57.7	78.1
	$CATs^{*}$ [7]	92.1	78.9	64.2	78.4
	$PWarpC-CATs^*$ [49]	95.5	85.0	85.5	88.7
Unsupervised task-specific	CNNGeo [33]	90.1	76.4	56.3	74.4
	PARN [15]	89.5	75.9	71.2	78.8
	GLU-Net [46]	93.2	73.3	71.1	79.2
	Semantic-GLU-Net [48]	95.3	82.2	78.2	85.2
Unsupervised zero-shot	DINOv1-ViT-S/8 [1]	68.7	44.7	36.7	52.7
	DINOv2-ViT-B	81.2	68.4	51.5	69.4
	Stable Diffusion (SD)	92.1	62.6	48.4	72.5
	${\rm Concat.}~{\rm DINOv2} + {\rm SD}~[55]$	92.9	73.8	59.6	78.7
	${ m FMap} \; { m DINOv2(basis)} + { m DINOv2(loss)}$	83.5	69.2	52.7	71.0
	${ m FMap}\;{ m SD(basis)}+{ m SD(loss)}$	80.0	63.4	51.5	67.8
	FMap DINOv2(basis) + SD(loss) (ours)	84.8	70.4	53.5	72.2
	FMap DINOv2(loss) + SD(basis) (ours)	93.1	74.0	59.9	78.9

References

Functional maps: a flexible representation of maps between shapes. In: ACM TOG 31(4), 1–11(2012)

A tale of two features: Stable diffusion complements dino for zero-shot semantic correspondence. In: arXiv preprint arXiv:2305.15347 (2023)

山大王 中国大陆上海

