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Fig. 1: Ag2Manip enables various manipulation tasks in scenarios where domain-specific demonstrations are unavailable. Leveraging
agent-agnostic visual and action representations, Ag2Manip (a) learns from human manipulation videos, removing the reliance on domain-
specific examples; (b) autonomously acquires diverse manipulation skills in simulation; and (c) facilitates robust imitation learning of
manipulation skills in the real world, demonstrating the practical applicability and generalizability of our approach.

Abstract— Autonomous robotic systems capable of learning
novel manipulation tasks are poised to transform industries
from manufacturing to service automation. However, current
methods (e.g., VIP and R3M) still face significant hurdles,
notably the domain gap among robotic embodiments and the
sparsity of successful task executions within specific action
spaces, resulting in misaligned and ambiguous task represen-
tations. We introduce Ag2Manip (Agent-Agnostic representa-
tions for Manipulation), a framework aimed at addressing
these challenges through two key innovations: (1) an agent-
agnostic visual representation derived from human manipulation
videos, with the specifics of embodiments obscured to enhance
generalizability; and (2) an agent-agnostic action representa-
tion abstracting a robot’s kinematics to a universal agent
proxy, emphasizing crucial interactions between end-effector
and object. Ag2Manip has been empirically validated across
simulated benchmarks, showing a 325% performance increase
without relying on domain-specific demonstrations. Ablation
studies further underline the essential contributions of the
agent-agnostic visual and action representations to this success.
Extending our evaluations to the real world, Ag2Manip sig-
nificantly improves imitation learning success rates from 50%
to 77.5%, demonstrating its effectiveness and generalizability
across both simulated and real environments.

I. INTRODUCTION

The ability of robotic systems to autonomously learn
and execute novel manipulation skills without relying on
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expert demonstrations is pivotal, as these systems adapt
to evolving tasks and environments. Although significant
progress has been made in learning manipulation skills [1–
5], the challenge of autonomously acquiring these skills,
without expert guidance and task-specific rewards, remains
unresolved. Previous research [6–8] has investigated the use
of extensive pre-training to enhance manipulation learning.
Notably, recent studies [6, 7] have focused on developing
comprehensive visual representations from human-centric
video datasets [9, 10]. These datasets are instrumental in
capturing the quintessence of tasks and the temporal dy-
namics between visual frames, subsequently facilitating the
generation of rewards that orient robots toward fulfilling
specified objectives. Alternatively, other methodologies [8]
incorporate Large Language Models (LLMs) to directly craft
reward functions that assist in mastering new manipulation
skills. Despite these advancements, existing strategies often
falter when confronted with intricate tasks, highlighting three
principal challenges in the realm of novel skill acquisition.

First, visual representations derived from human-centric
demonstrations [6, 7] encounter challenges in bridging the
gap between the varied appearances and kinematic dis-
crepancies of humans and robots. The appearance discrep-
ancy introduces biases when applied to robots, undermining
the models’ capacity to decode tasks and their temporal
sequences accurately. Kinematic differences, on the other
hand, lead to divergent execution strategies; robots might
follow trajectories that differ markedly from those in human
demonstrations to accomplish tasks like picking up a cup.
This variance can cause the model to erroneously classify
a robot’s optimal path as incorrect due to its reliance on
human-centric training data.
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Second, the omnipresence of human hands in the training
data biases these models towards prioritizing hand appear-
ance, focusing on their position and movement over the
actual task objective. For example, in tasks involving cup
manipulation, the model may highlight the upward move-
ment of the hands rather than ensuring the cup has been
successfully grasped.

Lastly, the demand for precision in robotic manipulation
exacerbates these challenges. Minor deviations in trajectory
can result in significant performance degradation. While
expert-designed rewards provide detailed guidance, those de-
rived from visual or linguistic models are often too broad and
high-level, leading to inaccuracies. This issue is particularly
pronounced in tasks that require precise interactions with the
environment, such as opening a door, where precise actions,
such as grasping the handle, are crucial.

We introduce Ag2Manip: Agent-Agnostic representations
for Manipulation to address the challenges outlined above.
As depicted in Fig. 2, Ag2Manip features two primary com-
ponents of generalizable visual and action representations.

To counteract the biases stemming from human-centric
training data, we devise an agent-agnostic visual represen-
tation. Inspired by Bahl et al. [2], we isolate and obscure
both humans and robots within video frames, subsequently
inpainting the videos. By training on these agent-obscured
frames, in the vein of R3M [6], our visual representation
bridges the domain gap between humans and robots, fos-
tering robust adaptation to robot-centric tasks. This agent-
agnostic visual model prioritizes task processes over human-
specific cues, thus providing clearer and more task-focused
guidance for manipulation learning.

To mitigate inaccuracies stemming from visual guidance,
we propose an agent-agnostic action representation. This
framework abstracts robot actions into a universal proxy
agent equipped with a universally applicable action space.
This representation divides manipulation learning into two
phases: exploration and interaction. In exploration, the focus
is on learning the proxy’s trajectory, akin to the end-effector’s
movements, to enhance environment exploration. Transition-
ing to interaction when the proxy nears an object’s actionable
zone shifts the focus to understanding the proxy’s exerted
forces, simulating end-effector and object interactions. This
bifurcation simplifies the learning process, reducing the
complexities associated with direct robot and object manip-
ulation. By employing this agent-agnostic action space, our
method streamlines task learning, concentrating on pivotal
task elements and diminishing the repercussions of sparse
guidance. We further complement these representations with
a well-structured reward function for each learning stage,
fostering interaction and facilitating the translation of learned
skills to actual robot arm movements.

Ag2Manip’s effectiveness is showcased through goal-
conditioned novel skill learning without expert demonstra-
tions or task-specific rewards, across a variety of simulated
tasks in FrankaKitchen [11], ManiSkill [12], and PartMa-
nip [4]. Our method achieves an impressive 78.7% success
rate, significantly outperforming baseline methods with an

18.5% success rate. By leveraging agent-agnostic visual
and action representations, Ag2Manip significantly advances
manipulation learning, equipping robots to navigate novel
tasks in varied environments adeptly. Further validation in
real-world experiments demonstrates the model’s superior
skill acquisition capabilities.

In summary, our work introduces three pivotal contri-
butions to the field of learning novel manipulation skills
without expert input: (i) an agent-agnostic visual rep-
resentation that effectively narrows the embodiment gap,
enhancing robotic systems’ visual data interpretation; (ii) an
agent-agnostic action representation that simplifies complex
robot actions into more generalizable proxy-agent actions,
augmented by a targeted reward function to encourage envi-
ronmental interaction; and (iii) substantial progress in robot
novel skill learning performance, validated across challeng-
ing tasks and affirming our approach’s practical benefits in
boosting robotic adaptability and autonomy.

II. RELATED WORKS

A. Learning Robotic Manipulation

The field of robotic manipulation encompasses both foun-
dational motor skills such as grasping [13–15] and manip-
ulation [4, 16–19], as well as advanced cognitive abilities
to understand task specifics, such as location, method, and
reasoning [20–23]. The development of parallel simulation
environments [24–26] has facilitated the learning of such
skills, though this often necessitates manually tailored reward
functions for each task [13, 14, 17], even with assistance from
LLMs and human feedback [8]. Learning from demonstra-
tions offers a promising alternative by reducing the need for
extensive exploration and improving scalability [22]. Robot
action trajectories can be captured through teleoperation
[27, 28], augmented reality systems [29], and teach pendant
programming [1, 3, 30]. Collecting robot demonstrations is
labor-intensive, whereas learning from human videos offers
a more natural and cost-effective alternative for translating
observed interactions into motor controls [28, 31]. However,
balancing the cost of data collection with the quality of
demonstrations presents a significant challenge in directly
acquiring new skills from these sources. Inspired by recent
advancements [6, 7], our study introduces generalizable vi-
sual and action representations for learning novel manip-
ulation skills across varied tasks, leveraging the wealth of
human demonstrations. Our work aims to address the chal-
lenges inherent in learning directly from videos, presenting a
scalable and efficient solution for robotic systems to acquire
new capabilities.

B. Reward Generation for Skill Learning

Model-free Reinforcement Learning (RL) for skill learning
is notably resource-intensive, primarily due to the necessity
for expert-crafted, task- and embodiment-specific rewards.
Addressing this issue involves devising an autonomously
generated reward function for tailored to each task. Founda-
tion models, such as LLMs, have shown potential in directly
creating reward functions from task descriptions [8, 32–34].
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Fig. 2: Framework of Ag2Manip. Our approach is structured into three primary components: (a) learning an agent-agnostic visual
representation, (b) learning abstracted skills via an agent-agnostic action representation, and (c) retargeting the abstracted skills to a robot.

However, their effectiveness is somewhat limited without
environmental context, often requiring expert feedback to
bridge this gap [8]. Additionally, this method’s dependency
on environmental states, which are usually not readily avail-
able in real-world settings, poses a significant challenge.
An alternative, perceptual reward, emerges as a promising
avenue for skill learning. By observing human-executed task
videos [9], robots can derive an implicit embedding that
captures the sequential nature of events, serving as a versa-
tile reward mechanism [6, 35, 36]. Advancing this concept,
some researchers suggest learning temporal dynamics not
from task-specific footage but from diverse tasks, aiming to
establish a task-agnostic visual representation with enhanced
generalizability [7]. Our work extends these approaches
by decoupling agent-specific information from the visual
reward, enhancing its robustness and applicability across a
broader range of contexts.

C. Agent-Agnostic Representation

Crafting agent-agnostic representations for actions, ob-
jects, and tasks aims to abstract these elements from the
specifics of robotic articulations and sensory configurations.
This abstraction significantly boosts adaptability and trans-
ferability across different robotic systems and even into hu-
man contexts by separating low-level perceptual and control
details in favor of focusing on high-level action abstractions.
This approach enables the conceptualization of manipulation
tasks as desired changes in the world state over time,
minimizing the need for direct agent involvement [37]. To
aptly capture the nuances of agent-object interactions while
maintaining agent-agnosticism, the concepts of interaction
regions (often correlated with affordances) and trajectories

come into play [2, 15, 38–42]. These elements illustrate task
execution modalities independent of a robot’s specific motor
capabilities. For representing interaction zones, a straightfor-
ward yet effective method involves utilizing contact points
to delineate essential contacts between a manipulator (e.g., a
finger) and an object [40, 42–44], catering well to simplistic
end-effectors like parallel grippers or suction cups. In sce-
narios characterized by contact-rich interactions, the adoption
of contact maps is indispensable for detailing the extensive
contact dynamics or for accurately charting the proximity of
each finger to the object surface [15, 45].

III. METHOD

We explore robotic manipulation learning in scenarios
where expert demonstrations are absent. Our objective is to
learn robot motions to accomplish a specified goal, given
only the image of the desired end state. To this end, we
introduce Ag2Manip: Agent-Agnostic representations for
Manipulation, whose framework is illustrated in Figure 2.
Our methodology is built on two core innovations: an agent-
agnostic visual representation (Sec. III-A) that mitigates the
domain disparity between humans and robots, and an agent-
agnostic action representation (Sec. III-B) that distills robot
actions to those of a universal proxy agent. These foundations
enable us to harness RL to formulate a manipulation policy
within this generalized action space, informed by a novel
reward function emerging from our agent-agnostic visual
paradigm (Sec. III-C). Finally, the trajectory devised for the
proxy agent is adapted to the robot through Inverse Kine-
matics (IK) (Sec. III-D), ensuring the practical applicability
of the learned behaviors.



A. Agent-Agnostic Visual Representation

Our work seeks to develop an agent-agnostic visual rep-
resentation that transcends the domain gap between human
and robot manipulations, building on pre-trained visual rep-
resentations on human demonstrations [6, 7]. This approach
aims to augment the versatility and effectiveness of these
representations within robotic contexts, facilitating a more
adaptable skill acquisition process.

Data pre-processing: We start with a set of human
demonstration video data D “ tvc :“ poc1, o

c
2, ..., o

c
nc

quNc“1,
where ocf PRHˆWˆ3 is the f -th raw frame in the c-th video
clip vc that describes how a human completes a manipulation
task. Inspired by Bahl et al. [2], we initiate this process
by segmenting the human body from each frame using the
ODISE algorithm [46]. Following segmentation, we employ
a video inpainting model, E2FGVI [47], to fill in the areas
previously occupied by the human. This approach not only
removes the human from the video but also ensures a
smooth temporal coherence between frames, resulting in a
manipulation dataset Da that is effectively agent-agnostic.

Time-contrastive pre-training: Given the agent-
agnostic demonstration dataset Da, we aim to learn an
encoder Fϕ : RHˆWˆ3 ÑRK that maps a visual observation
into a latent embedding, where K denotes the embedding
dimension. Following Nair et al. [6], we minimize the time-
contrastive loss [48] Ltcn and the regularization penalty Lreg:

L“λ1Eoci ,o
c
j ,o

c
k
,o‰c

l
„DaLtcn `λ2Eo„DaLreg, (1)

where poci , o
c
j , o

c
kq „ vc indicates a set of temporally ordered

3-frame samples, and each sample in a set is drawn from
the same video clip vc to ensure task proximity. o‰c

l is a
negative sample from a disparate video clip.

The time-contrastive loss is designed to guide the repre-
sentation so that frames temporally closer to each other are
mapped closer in the embedding space, compared to frames
that are temporally distant or from disparate video clips:

Ltcn “ ´ log
eSpzci ,z

c
jq

eSpzci ,z
c
jq `eSpzci ,z

c
kq `eSpzci ,z

‰c
l q

, (2)

where Sp¨, ¨q represents the similarity metric between two
embeddings, zci “Fϕpoci q denotes the embedding of oci ex-
tracted from the encoder Fϕ. The regularization loss encour-
ages a more compact embedding space:

Lreg “ }Fϕpoq}1 `}Fϕpoq}2. (3)

B. Agent-Agnostic Action Representation

We introduce an agent-agnostic action representation for
robotic manipulation learning, abstracting a robot’s move-
ments into those of a universal, free-floating proxy agent
that captures both motion and exerted forces. The learning
process is bifurcated into two stages: exploration, concen-
trating on the proxy’s poses, and interaction, focusing on
the forces applied by the proxy on the environment. An RL
policy is developed to minimize the embedding distance in
the agent-agnostic visual representation space between the
current state and a goal state depicted by an image.

The exploration phase: The robot is abstracted as
a universal proxy agent, represented by an agent-agnostic
sphere to mimic the end-effector’s actions, translating the
robot’s actions into a sequence of positions for this sphere.
Control over the proxy is established through a proportional-
derivative (PD) controller [49], with the proxy embodying a
collision volume of radius re to denote its physical presence.
This phase concludes when the proxy reaches a precalculated
interactable region within the environment, marking the
commencement of the interaction phase. For the scope of
this work, which focuses on robots equipped with two-
finger grippers, interactable regions are identified as zones
where parallel grips are deemed feasible. These regions
are determined from point cloud scans of the environment,
based on proximity to potential gripping points identified by
GraspNet [50]. Although parallel grip detection is utilized
for efficiency in our setup, general-purpose methods like
GenDexGrasp [15] could also delineate interactable regions
suitable for a range of dexterous manipulations.

The interaction phase: With the proxy’s entry into an
interactable region, indicating a viable grasp and subsequent
object attachment, the focus shifts to the interaction phase.
This stage is dedicated to the manipulation of the object,
abstracting the robot’s actions into the forces the proxy exerts
upon the environment.

C. Reinforcement Learning and Reward Shaping

Given a goal image g PRHˆWˆ3, our objective is to
perform the task it represents. We use a model-free Goal-
Conditioned Reinforcement Learning (GCRL) framework
to learn the agent-agnostic action policy π “ tπexp,πintu,
where πexp and πint govern the proxy agent’s actions during
the exploration and interaction phases, respectively. The
policy π takes the robot states rt and the environment’s
states st at frame t as its observation and produces the
action at “ patp, a

t
f q, where atp PR3 represents the proxy’s

desired position during exploration, and atf PR3 represents
the intended force during interaction. These actions are then
executed by the proxy via a PD controller to achieve the
desired outcomes.

To reach the goal depicted by g, we focus on maximizing
the similarity Spzt, zgq between the embeddings for current
and goal images ot and g. Recognizing that directly employ-
ing S as a reward function could inappropriately penalize
trajectories close but not identical to optimal, we introduce
an importance-weighted reward function to promote explo-
rations leading to states that improve upon the initial state:

Rpot, g;ϕq “ exp

ˆ

`

1`α ¨1Spzt,zgq´βą0

˘ Spzt, zgq´β

β

˙

´1, (4)

where β “Spz0, zgq denotes the similarity between the em-
beddings of the start and goal images and αą 0 is a tunable
hyperparameter. This reward function, with its indicator
function, prioritizes states closer to the goal relative to the
starting point and lessens the penalty for deviations, thus
promoting exploration beneficial in the policy’s early phase
of learning with random policy behaviors.



For policy optimization, we utilize Proximal Policy Opti-
mization (PPO) [51], chosen for its training stability and ef-
ficiency in convergence. Through PPO, we aim to maximize
the expected cumulative reward E

”

řT´1
t“0 γtRpot, g;ϕq

ı

,
thereby effectively guiding the policy π towards the goal.

D. Robot-Specific Action Retargeting

To facilitate the transition of the proxy’s trajectory, as
determined by π, into actionable movements for real robots,
we employ a retargeting policy that translates proxy actions
into robot-specific actions. During the exploration phase,
the positions of the proxy agent are directly mapped to the
robot’s end-effector positions, thereby converting the proxy’s
navigational path into corresponding end-effector motions.
As the process shifts from exploration to interaction, the
end-effector’s 6D pose is adjusted to align with the nearest
viable grasp pose as identified by GraspNet, an approach that
is feasible because this transition is predicated on the prox-
imity of an achievable grasp. In the interaction phase, the
movement of the object dictates the end-effector’s 6D pose
trajectory, ensuring the robot’s actions remain in harmony
with the object’s dynamics. The trajectory for the robot arm
is calculated using IK, aligning the practical task execution
with the proxy’s intended actions.

E. Implementation Details

In Sec. III-A, we choose Epic-Kitchen [9] as the human
demonstration dataset. Echoing the choices of R3M [6] and
VIP [7], we use a standard ResNet50 [52] as the architecture
of the visual encoder Fϕ. We use the negative L2 distance
to measure similarity Sp¨, ¨q. The weights for our learning
objective are set to λ1 “λ2 “ 1.0. The optimization of the
visual encoder is carried out using an Adam optimizer with
a learning rate of 10´4, over a duration of 24 hours on a
single NVIDIA A100 GPU. In Sec. III-B, the collision and
interactive region radii are defined as 2 centimeters (re) and
10 centimeters (rint). For the reward shaping in Sec. III-C,
α“ 3.0 is empirically determined as the hyperparameter of
the reward function across all tasks.

IV. SIMULATIONS AND EXPERIMENTS

Our comprehensive evaluation of the proposed Ag2Manip
demonstrates significant improvements in terms of task suc-
cess rates, achieving a leap from a baseline success rate of
18.5% to an impressive 78.7% across tasks sourced from
three different environments. Furthermore, our visual repre-
sentation contributes to a marked increase in the success rate
of imitation learning, which increases from 50% to 77.5%.
These advancements highlight the Ag2Manip’s effectiveness
and its considerable promise for real-world applications.

A. Simulation Setup

Environments: To assess the broad applicability of the
proposed Ag2Manip across various manipulation tasks, we
select 24 distinct tasks from three varied simulation envi-
ronments. FrankaKitchen [11], ManiSkill [12], and PartMa-
nip [4]. These tasks span a wide range of actions, including
opening, pulling, and moving, and involve interactions with
various objects like cabinets, microwaves, and kettles, exe-
cuted using a 9-DOF Franka Emika robotic arm and gripper.
This setup typifies a standard in robotic manipulation.

Experiments are conducted within the NVIDIA IsaacGym,
leveraging its GPU acceleration for efficient RL-based learn-
ing. The robot initiates each task from a standardized default
position, with task objectives defined by goal states repre-
sented by images rendered from one of three predetermined
camera perspectives (front, left, right). Success in a task is
determined by the object or component reaching its goal
state within a predefined error margin. To ensure a thorough
evaluation, each of the 24 tasks undergoes testing in 9 varied
setups combining different camera angles and initialization
seeds (3 cameras × 3 seeds), providing a comprehensive
overview of performance across multiple conditions.

Baselines: Our approach is compared against two base-
lines, R3M [6] and VIP [7], which utilize agent-aware visual
representations and time-contrastive learning objectives for
learning manipulation skills. Eureka, a novel method dis-
tinguished for its ability to autonomously generate reward
functions via LLMs, also stands as a significant benchmark
and highlights its strengths in skill learning.

TABLE I: Comparisons and ablation studies. Each task was evaluated over 3 seedsˆ3 cameras “9 runs, with the numbers 0´9
indicating the count of successful attempts. The characters a - x denote specific tasks. Tasks from FrankaKitchen [11] include: a: open
hinge-cabinet, b: open microwave, c: open slide-cabinet, d: close hinge-cabinet, e: close microwave, f: close slide-cabinet,
g: move kettle, h: pick up kettle, i: turn on switch, and j: turn off switch. Tasks from ManiSkill2 [12] include: k: open door,
l: close door, m: pick up cube, n: stack cube, o: pick up clutterycb, p: insert peg, q: turn left faucet, and r: turn right
faucet. Tasks from PartManip [4] include: s: turn down dishwasher, t: pull drawer, u: turn up dishwasher, v: push drawer, w:
press button, and x: lift lid.

Method FrankaKitchen ManiSkill PartManip Overall
a b c d e f g h i j Avg. k l m n o p q r Avg. s t u v w x Avg.

R3M [6] 0 0 0 3 2 0 1 0 0 0 6.7% 0 6 0 0 0 0 0 0 8.3% 0 0 3 9 0 0 22.2% 11.1%
VIP [7] 0 0 0 2 6 0 3 0 0 0 12.2% 0 6 0 0 0 0 0 0 8.3% 0 0 0 9 0 0 16.7% 12.0%

Eureka [8] 0 0 0 7 3 2 3 0 0 0 16.7% 0 9 0 0 0 0 0 1 13.9% 0 0 3 6 0 0 20.0% 18.5%

Ours w/o Act.Repr. 4 1 8 9 9 9 9 1 7 2 65.6% 0 9 0 0 0 0 1 8 25.0% 0 0 8 9 0 0 31.5% 43.5%
Ours w/o Rew.Shp. 8 7 7 9 9 9 7 9 1 0 73.3% 9 9 8 0 3 1 4 5 54.2% 9 6 8 9 0 9 75.9% 67.6%

Ours 7 8 8 8 8 9 8 6 9 9 88.9% 7 9 6 0 7 2 8 8 65.3% 9 7 9 9 0 9 79.6% 78.7%

Ours (Proxy) 8 9 9 8 9 9 9 9 9 9 97.8% 7 9 5 5 7 3 8 9 73.6% 9 9 9 9 0 8 81.5% 85.7%
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Fig. 3: Qualitative results in simulation. The top four rows are successful executions, whereas the bottom row shows failures.

For equitable comparison, all methods, barring Eureka,
are built upon a ResNet50 architecture and trained using
the Epic-Kitchen dataset. To eliminate the influence of task-
specific expert insights, Eureka’s human feedback feature
was deactivated, ensuring that the evaluation focuses solely
on each method’s intrinsic learning capabilities.

Ablations: Our ablation study delineates the impact of
distinct components by excluding them from our method.
Ours w/o Act.Repr. investigates learning directly within the
robot’s native action space while retaining the agent-agnostic
visual representation. Conversely, Ours w/o Rew.Shp. em-
ploys a straightforward similarity metric instead of our
tailored reward function. The removal of solely the visual
representation was not considered, given the impracticality
of computing agent-aware visuals without corresponding ac-
tions. Similarly, excluding both representations would essen-
tially replicate the R3M baseline. Additionally, Ours (Proxy)
examines the efficacy of the proxy agent’s performance
devoid of action retargeting to a robot, thereby assessing the
impact of retargeting on performance.

B. Results: Simulation

The summarized results in Tab. I detail the average task
success rates within each of the three environments and
cumulatively. Ag2Manip emerges as a standout, securing an
overall task success rate of 78.7%, markedly surpassing the
baseline methods with success rates of 11.1%, 12.0%, and
18.5%. Further dissecting the success rates per task reveals
the distinct competencies of each method. Notably, baseline
approaches underperform in tasks demanding precise robot-
object interactions, such as door opening or kettle lifting,
which require initial attachment actions that often elude
the baselines. Eureka exhibits similar shortcomings, which
we ascribe to the absence of expert-in-the-loop feedback,
consequently affecting its ability to generate refined re-
ward signals. In contrast, Ag2Manip adeptly acquires these
challenging skills, benefitting from its foundational agent-
agnostic visual and action representations.

Nonetheless, Ag2Manip does encounter consistent chal-
lenges with specific tasks: cube stacking, peg insertion,

and button pressing. These difficulties arise from a range
of issues, including collision occurrences with the robot
arm in cube stacking, complex object interactions beyond
the training set’s scope for peg insertion, and the lack of
substantial visual cues for button pressing due to minor
appearance changes. Potential resolutions could entail inte-
grating more sophisticated planning methods, broadening the
scope of human demonstration videos for training the visual
representation, and incorporating more guiding elements like
the anticipated trajectory of the end-effector to refine task
performance.

Additionally, Fig. 3 illustrates some of the manipulation
trajectories learned by Ag2Manip, demonstrating its efficacy
in handling both rigid and articulated objects across Fig. 3
(a-l), and delineating instances of failure in Fig. 3 (m-o).

C. Results: Ablation
Substituting our meticulously crafted reward function with

a basic similarity metric (Ours w/o Rew.Shp.) led to an
11.1% reduction in overall task success rates. This significant
decline accentuates the pivotal role our reward shaping plays
in facilitating the completion of intricate tasks, particularly
those necessitating precise movements like turning and lift-
ing. The omission of the agent-agnostic action representation
(Ours w/o Act.Repr.) had an even more marked effect, with a
35.2% drop in success, underscoring its critical contribution
to Ag2Manip’s performance in tasks that demand accurate
control, such as pulling and opening. Notably, even with
this reduction, this configuration still outperforms the R3M
baseline by 32.4%, highlighting the value added by our
agent-agnostic visual representation.

Examining the performance of our agent-agnostic proxy
agent before retargeting its actions to a robot (Ours (Proxy))
revealed that the retargeting step accounts for a 7.0% de-
crease in success rates. A potential improvement to address
this gap could be incorporating the retargeting outcome as
an additional reward term in the learning process.

D. Visual Representation: Task Progress Consistency
To verify the consistency of our visual representation in

mirroring the progression within a manipulation task, we



employed the Spearman Rank Correlation [53] to analyze
expert trajectories. This approach compares the temporal
sequence of video frames with their respective similarities
to the task’s goal state, aiming to ascertain whether initial
frames generally exhibit lesser similarity to the goal than
subsequent frames, indicative of coherent task advancement.

The proposed Ag2Manip is benchmarked against sev-
eral established baselines, such as a ResNet50 [52] model
pre-trained on ImageNet for general image classification,
CLIP [54, 55], R3M [6], and VIP [7]. These models span
a range of applications, from basic image recognition to
robotic control tasks, offering a broad spectrum for com-
parative analysis. The evaluation encompassed 72 expert
trajectories—three per task—for the 24 tasks delineated in
prior experiments.

According to the results tabulated in Tab. II, our agent-
agnostic visual representation demonstrates a higher consis-
tency with the logical task progression over time, surpassing
the baseline models. This implies that our approach provides
more accurate and dependable cues for task learning, thereby
improving the robot’s comprehension and execution of tasks
through visual guidance.

TABLE II: Task progress consistency of visual representation.

Method FrankaKitchen ManiSkill PartManip Overall

ResNet50 [52] 0.535˘.169 0.407˘.182 0.202˘.197 0.418˘.199

CLIP [54] 0.627˘.086 0.381˘.139 0.347˘.151 0.490˘.134

R3M [6] 0.498˘.190 0.393˘.191 0.525˘.123 0.474˘.177

VIP [7] 0.496˘.246 0.251˘.178 0.386˘.121 0.401˘.208

Ag2Manip 0.828˘.082 0.696˘.182 0.618˘.227 0.740˘.153

E. Visual Representation: Experiments on Imitation

This experiment aims to evaluate the effectiveness of
our visual representation in real-world few-shot imitation
learning scenarios. Utilizing a Franka Emika FR3 robot and
a Kinect Azure camera, as depicted in Fig. 4, we explore
four manipulation tasks: PushDrawer, CloseDoor, PickBag,
and MoveBasket. For each task, we gather 20 demonstrations
to facilitate the imitation learning process.

We implement advantage-weighted regression [56] for this
experiment, a strategy that accentuates transitions contribut-
ing significantly to task progression. This approach assigns
weights by assessing the similarity between consecutive
observations and the task’s goal state, thereby incentivizing
actions that evidently advance toward task completion.

The specifics of our experimental setup and the results
are shown in Tab. III and Fig. 4. Our findings indicate that
the agent-agnostic visual representation notably outperforms
the baselines, including ResNet50 and CLIP, which do not
undergo task-specific pre-training, as well as R3M and VIP,
which exhibit commendable performance barring certain
exceptions. Our approach demonstrates superior capability in
narrowing the domain gap that often exists between training
datasets and real-world observations, capturing the critical
action trajectories necessary for successful task execution
within a few-shot learning framework.
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Fig. 4: Experimental setup.

TABLE III: Experimental results.

Method PushDrawer CloseCabinet PickBag MoveBasket

ResNet50 [52] 1 ⁄ 10 5 ⁄ 10 1 ⁄ 10 1 ⁄ 10
CLIP [54] 2 ⁄ 10 3 ⁄ 10 0 ⁄ 10 0 ⁄ 10
R3M [6] 4 ⁄ 10 5 ⁄ 10 4 ⁄ 10 3 ⁄ 10
VIP [7] 6 ⁄ 10 6 ⁄ 10 2 ⁄ 10 6 ⁄ 10

Ag2Manip 7 ⁄ 10 8 ⁄ 10 8 ⁄ 10 8 ⁄ 10

V. CONCLUSION

In this work, we introduced Ag2Manip, a novel frame-
work that enables robots to acquire various manipulation
skills without needing expert demonstrations. Our method is
grounded in developing novel agent-agnostic visual and ac-
tion representations designed to bridge the domain disparities
between various robot embodiments and address the intricate
precision requirements inherent in robotic manipulations.
Evaluated through extensive simulations and real-world ex-
periments, Ag2Manip has proven to significantly improve the
process of learning robotic manipulation skills, underscoring
its effectiveness in facilitating autonomous skill acquisition
in robots. This achievement represents a significant leap
towards the realization of versatile embodied agents equipped
to navigate and adapt to new challenges seamlessly.
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