Ag2Manip: Learning Novel Manipulation Skills with **Agent-Agnostic Visual and Action Representations**

Puhao Li^{1,2,*}, Tengyu Liu^{1,*}, Yuyang Li^{1,2,3}, Muzhi Han⁴, Haoran Geng^{1,5}, Shu Wang⁴, Yixin Zhu, Song-Chun Zhu, Siyuan Huang^{1,⊠}

 \star Equal Contribution, \boxtimes Corresponding Author. ¹State Key Laboratory of General AI, BIGAI ²Dept. of Automation, THU ³Institute for AI, PKU ⁴UCLA. ⁵School of EECS, PKU

1. Autonomous Skill Acquisition

Autonomous skill acquisition is pivotal as they adapt to changing tasks and environments, moving robot from factory into our daily lives.

Task: Learning novel manipulation skills without any expert input.

Challenges: Visual and kinematics gaps prevent learning from human demos. Dexterous manipulation requires high precision in planning and execution.

Ag2Manip as the solution:

- Generalizable <u>agent-agnostic</u> visual and action representations for robotic manipulation.
- **78.7% success**, far surpassing baselines (18.5%) across 24 tasks.
- **Real-world experiments** validate our representation in few-shot IL.

2. Framework of Ag2Manip

(a) Learning agent-agnostic visual representation from Epic-Kitchen. We first mask and inpaint humans in Epic-Kitchen videos to eliminate the visual **bias towards human**. Then, we learn an encoder \mathcal{F}_{ϕ} that maps RGB images to latent embeddings that capture task progress through time-contrastive loss:

 $\mathcal{L} = \lambda_1 \mathbb{E}_{o_i^c, o_j^c, o_k^c, o_l^{\neq c} \sim \mathcal{D}^a} \mathcal{L}_{\text{tcn}} + \lambda_2 \mathbb{E}_{o \sim \mathcal{D}^a} \mathcal{L}_{\text{reg}}, \quad \mathcal{L}_{\text{tcn}} = -\log \frac{e^{\mathcal{S}(z_i^c, z_j^c)}}{e^{\mathcal{S}(z_i^c, z_j^c)} + e^{\mathcal{S}(z_i^c, z_k^c)} + e^{\mathcal{S}(z_i^c, z_k^c)}}, \quad \mathcal{L}_{\text{reg}} = \|\mathcal{F}_{\phi}(o)\|_1 + \|\mathcal{F}_{\phi}(o)\|_2.$

3. Extensive Evaluations

Performance: Ag2Manip has a 78.7% overall success rate (**3x baseline increase**), benefiting from its agent-agnostic representations \rightarrow See Tab. I.

Task Progress Consistency: The proposed agent-agnostic visual representation demonstrates greater consistency in capturing task progress -> See Tab. II. **Real-world Imitation:** In **few-shot real-world imitation learning**, our visual

representation shows superior efficiency over the baselines \rightarrow See Tab. III.

Table I: Simu	lation studie	s on Ag2Manip
---------------	---------------	---------------

Method	FrankaKitchen	ManiSkill	PartManip	Overall

(b) Learning abstract skill with agent-agnostic action representation.

We abstract a robot's actions into a proxy's **motion and exerted force**. We then use PPO for policy optimization within this **agent-agnostic action space**.

$$\mathcal{R}(o_t, g; \phi) = \exp\left(\left(1 + \alpha \cdot \mathbf{1}_{\mathcal{S}(z_t, z_g) - \beta > 0}\right) \frac{\mathcal{S}(z_t, z_g) - \beta}{\beta}\right) - 1, \qquad \mathbb{E}\left[\sum_{t=0}^{T-1} \gamma^t \mathcal{R}(o_t, g; \phi)\right]$$

(c) Retargeting the Abstracted Skills to a Specific Robot with IK.

	a	b	С	d	е	f	g	h	i	j	Avg.	k	1	m	n	0	р	q	r	Avg.	S	t	u	v	W	x	Avg.	
R3M [8]	0	0	0	3	2	0	1	0	0	0	6.7%	0	6	0	0	0	0	0	0	8.3%	0	0	3	9	0	0	22.2%	11.1%
VIP [9]	0	0	0	2	6	0	3	0	0	0	12.2%	0	6	0	0	0	0	0	0	8.3%	0	0	0	9	0	0	16.7%	12.0%
Eureka [10]	0	0	0	7	3	2	3	0	0	0	16.7%	0	9	0	0	0	0	0	1	13.9%	0	0	3	6	0	0	20.0%	18.5% 🗔
Ours w/o Act.Repr.	4	1	8	9	9	9	9	1	7	2	65.6%	0	9	0	0	0	0	1	8	25.0%	0	0	8	9	0	0	31.5%	43.5%
Ours w/o Rew.Shp.	8	7	7	9	9	9	7	9	1	0	73.3%	9	9	8	0	3	1	4	5	54.2%	9	6	8	9	0	9	75.9%	67.6%
Ours	7	8	8	8	8	9	8	6	9	9	<u>88.9%</u>	7	9	6	0	7	2	8	8	<u>65.3%</u>	9	7	9	9	0	9	<u>79.6%</u>	<u>78.7%</u>
Ours (Proxy)	8	9	9	8	9	9	9	9	9	9	97.8%	7	9	5	5	7	3	8	9	73.6%	9	9	9	9	0	8	81.5%	85.7%

Table II: Task progress consistency of visual representations

FrankaKitchen ManiSkill Method **PartManip** Overall $0.418^{\pm.199}$ $0.407^{\pm.182}$ $0.202^{\pm.197}$ $0.535^{\pm.169}$ ResNet50 [51] $0.627^{\pm.086}$ $0.381^{\pm.139}$ $0.490^{\pm.134}$ $0.347^{\pm.151}$ CLIP [53] $0.393^{\pm.191}$ $0.525^{\pm.123}$ $0.498^{\pm.190}$ $0.474^{\pm.177}$ R3M [8] $0.496 \pm .246$ $0.386^{\pm.121}$ $0.401^{\pm.208}$ $0.251 \pm .178$ VIP [9] $0.828^{\pm.082}$ $0.696^{\pm.182}$ $0.618^{\pm.227}$ $0.740^{\pm.153}$ Ag2Manip

Table III: Experimental Results

Method	PushDrawer	CloseCabinet	PickBag	MoveBasket
ResNet50 [51]	1/10	5/10	$1/_{10}$	1/10
CLIP [53]	$^{2}/_{10}$	$3/_{10}$	0/10	$0/_{10}$
R3M [8]	$4/_{10}$	5/10	$4/_{10}$	$3/_{10}$
VIP [9]	6/10	6/10	$^{2}/_{10}$	6/10
Ag2Manip	$7/_{10}$	8/10	8/10	8/10

Conclusion

- Ag2Manip can acquire various robot manipulation skills without expert demonstrations.
- Ag2Manip leverages innovative agent-agnostic visual and action representations to bridge domain gaps and •
 - address precision challenges in robotic manipulation learning.
- Extensive simulated and real-world experiments show its effectiveness in autonomous skill acquisition.

