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Ag2x2

Fig. 1: Ag2x2 enables zero-shot acquisition of bimanual manipulation skills without relying on expert demonstrations or engineered
rewards. The framework operates in two key stages: (left) learning coordination-aware visual representations directly from human
manipulation videos (shown in sequential frames of cooking with highlighted hand) while preserving critical hand position data despite
domain differences; and (right) leveraging these representations to acquire diverse bimanual manipulation skills in simulation autonomously,
demonstrated through multiple Franka robot arms performing sequential steps of various tasks including cabinet opening (top row), door
manipulation (middle row), and rope handling (bottom row).

Abstract— Bimanual manipulation, fundamental to human
daily activities, remains a challenging task due to its inher-
ent complexity of coordinated control. Recent advances have
enabled zero-shot learning of single-arm manipulation skills
through agent-agnostic visual representations derived from
human videos; however, these methods overlook crucial agent-
specific information necessary for bimanual coordination, such
as end-effector positions. We propose Ag2x2, a computational
framework for bimanual manipulation through coordination-
aware visual representations that jointly encode object states
and hand motion patterns while maintaining agent-agnosticism.
Extensive experiments demonstrate that Ag2x2 achieves a
73.5% success rate across 13 diverse bimanual tasks from Bi-
DexHands and PerAct2, including challenging scenarios with
deformable objects like ropes. This performance outperforms
baseline methods and even surpasses the success rate of policies
trained with expert-engineered rewards. Furthermore, we show
that representations learned through Ag2x2 can be effectively
leveraged for imitation learning, establishing a scalable pipeline
for skill acquisition without expert supervision. By maintain-
ing robust performance across diverse tasks without human
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demonstrations or engineered rewards, Ag2x2 represents a step
toward scalable learning of complex bimanual robotic skills.

I. INTRODUCTION

Robotic manipulation today struggles with a fundamental
skill that humans take for granted—using our two hands
together. While we naturally coordinate our hands to cook,
fold laundry, or tie shoelaces, autonomous acquisition of such
bimanual manipulation skills remains a major challenge in
robotics. This challenge primarily stems from two critical
limitations: the dependence on human expertise for supervi-
sion and achieving precise bimanual coordination.

Current approaches to bimanual manipulation create a
fundamental bottleneck in scaling robotic capabilities due
to their reliance on expert input. Reinforcement Learn-
ing (RL) methods such as Bi-DexHands [1] demonstrate
impressive dexterity but depend on carefully engineered,
task-specific rewards that rarely generalize across different
tasks or embodiments. Similarly, while imitation learning
approaches [2–4] have shown promise when learning from
teleoperation [5, 6] and visual demonstrations [7–9], collect-
ing demonstrations for bimanual tasks is exceptionally time-
consuming and resource-intensive, limiting scalability.

Recent advances in single-arm manipulation [10–12] offer
valuable insights for addressing these challenges by demon-
strating that time-contrastive visual representations learned
from existing unstructured human videos can effectively
guide robotic policy learning. Human videos provide rich
task-completion insights that align well with robotic ob-
jectives, making them a feasible training source. However,
enabling robots to learn directly from human-centric data
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Fig. 2: Framework of Ag2x2. Our approach consists of two main components: (a) Representation Learning via time-contrastive learning
on agent-agnostic human demonstrations with preserved hand position information, visualized through sequential cooking frames with
erased hands but highlighted hand positions; and (b) Skill Learning through RL with agent-agnostic action representations, illustrated by
a robot learning to place a cube into a microwave, progressing from failed attempts to successful execution.

requires bridging the domain gap between human and robot
embodiments. While some approaches [10, 11] struggle with
bias from human kinematic structures, Ag2Manip [12] at-
tempted to solve this by masking regions occupied by hu-
mans, focusing exclusively on encoding object movements.
This approach, however, eliminates all embodiment infor-
mation, making it inherently unsuitable for bimanual tasks
where spatial and temporal hand coordination is critical—
such as transferring objects into initially closed containers.
Extending these methods to bimanual manipulation thus
necessitates a representation that captures both object pro-
gression and the crucial patterns of hand coordination.

To address these limitations, we present Ag2x2, a scalable
framework that advances bimanual manipulation skill ac-
quisition through coordination-aware visual representations
that jointly encode object states and hand motion patterns
while maintaining agent-agnosticism. Through extensive ex-
periments across 13 diverse tasks from Bi-DexHands [1]
and PerAct2 [13], Ag2x2 achieves a 73.5% success rate,
significantly outperforming baseline autonomous methods
and even surpassing policies trained with expert-engineered
rewards. Particularly noteworthy is Ag2x2’s proficiency
in traditionally challenging scenarios for robotics, such as
manipulating deformable objects like ropes. Furthermore,
we demonstrate that the skills acquired through Ag2x2 can
serve as high-quality training data for imitation learning,
establishing an efficient pipeline for scalable robotic skill
acquisition without expert supervision. By autonomously
generating large-scale manipulation data while maintaining
robust performance across diverse tasks, Ag2x2 represents
a significant step toward reducing reliance on costly human
demonstrations and carefully engineered rewards, thus en-
abling more scalable approaches to robotic learning.

II. RELATED WORKS

Bimanual Manipulation: Bimanual manipulation rep-
resents a fundamental leap in complexity beyond single-
arm tasks, requiring sophisticated coordination and planning
capabilities [9, 14–16]. Current research approaches can be
categorized into three distinct paradigms, each with inherent
limitations for scalable deployment.

Demonstration-based learning approaches have yielded
promising results but face significant scaling barriers. While
behavior cloning methods [5, 6] offer framework flexibility
across diverse scenarios, and structured representations like
those in Bi-KVIL [8] and PerAct2 [13] enhance generaliza-
tion, they all share a common bottleneck: dependence on
extensive expert demonstrations. This requirement creates
substantial data collection costs that limit real-world ap-
plicability. Even systems like 2HandedAfforder [17], which
extract bimanual affordances from egocentric human videos,
remain constrained to passive extraction without developing
coordination-aware policies.

RL approaches [1, 18] circumvent the need for demon-
strations but introduce a different yet equally problematic
dependency: task-specific reward engineering. These care-
fully designed rewards require significant expert knowledge
to develop and frequently fail to generalize beyond their
target scenarios, creating another scalability barrier.

Hybrid methods [19–21] attempt to address limitations of
both paradigms but typically remain restricted to narrow task
domains (e.g., screw manipulation) or still require substantial
expert input. This persistent reliance on human expertise—
whether for demonstrations, reward engineering, or task
specification—represents the critical obstacle preventing bi-
manual manipulation from achieving true scalability and
generalization across diverse tasks.



Representation Learning for Manipulation: Visual
representation learning for robotics has evolved along two
complementary trajectories, each with distinct advantages
and limitations for bimanual applications.

Task-specific approaches leverage techniques such as con-
trastive learning [22] and state prediction [23] to extract
targeted features. While effective in structured environments
with clear objectives, these methods struggle with cross-
task generalization and typically demand substantial task-
specific training data. Related techniques focusing on policy-
representation decoupling [24] or robotic priors [25] enhance
performance in narrowly defined tasks but face similar gen-
eralization challenges across diverse manipulation scenarios.

General-purpose methods offer broader applicability
through pre-trained visual representations [26] and frame-
works like RRL [27]. These approaches have demonstrated
impressive transferability in single-arm contexts, with re-
cent works [28, 29] validating their effectiveness. Human
video-based representations like R3M [11], VIP [10], and
Ag2Manip [12] further leverage everyday human activities
to learn generalizable manipulation features. However, when
applied to bimanual tasks, these methods reveal fundamental
limitations: they either focus exclusively on single-arm sce-
narios, treat hands as independent agents without modeling
their coordination, or fail to capture the crucial spatial
relationships necessary for effective bimanual manipulation.

Our work addresses this critical gap by introducing a
coordination-aware representation framework specifically en-
gineered for bimanual tasks. Unlike existing approaches
that either demand task-specific data or neglect coordina-
tion information, our method simultaneously captures object
state dynamics and hand-hand interactions while maintaining
agent-agnosticism. This representation enables autonomous
skill acquisition without expert demonstrations or engineered
rewards, while preserving the essential spatial and temporal
relationships that underpin successful bimanual coordination.

III. METHOD

Our framework, Ag2x2, enables learning of bimanual
manipulation skills without expert supervision. As illustrated
in Fig. 2, Ag2x2 operates through two core components:
(i) a novel representation learning approach that preserves
hand coordination information from human videos, and (ii)
a reward-shaping mechanism that leverages these represen-
tations to guide autonomous skill acquisition through RL.

A. From Single-Arm to Bimanual Representations

Bimanual manipulation fundamentally differs from single-
arm tasks by requiring coordinated action between two
effectors. While recent work has made progress in learning
manipulation from human videos, these approaches face
significant limitations when extended to bimanual scenarios.

The agent-agnostic approach introduced in Li et al. [12]
demonstrated that removing human presence from demon-
stration videos could facilitate learning transferable manip-
ulation skills. This method processes human demonstra-
tion videos D “
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However, this approach creates a critical gap for bimanual
manipulation: by removing all human presence, it eliminates
essential information about spatial relationships between
hands—information that is fundamental to coordination tasks
like transferring objects between hands or manipulating artic-
ulated objects with synchronized movements. While focusing
solely on environmental changes was sufficient for single-
arm tasks, bimanual manipulation requires understanding
both object state progression and the relative positioning of
the manipulation agents.

Our key insight is that effective bimanual manipulation
requires preserving specific coordination information while
still maintaining agent-agnosticism. Rather than completely
removing human presence, Ag2x2 selectively retains critical
positional information about hand interactions while abstract-
ing away human-specific kinematics and appearance details
that would limit transfer to robotic systems.

B. Coordination-Aware Visual Representation

Our visual encoder Fϕ extends Ag2Manip’s architecture
to jointly encode visual information and hand positions.
Specifically, Fϕ :RHˆWˆ3`4 ÑRK maps the concatenation
of an RGB image and the 2D coordinates of both hands to
a K-dimensional latent embedding, enabling explicit spatial
reasoning for bimanual coordination.

The encoder training follows a two-stage approach.
First, we fine-tune a ViT-Large model [30] pre-trained on
ImageNet-21k [31] using inpainted images as the only input,
employing LoRA [32] to maintain pre-trained knowledge
while enabling efficient adaptation. Second, we incorporate
hand position information by introducing specialized position
tokens. We encode each hand’s 2D position through a two-
layer MLP with hidden dimensions [16, 32] and ReLU
activation, generating position-encoded tokens that are con-
catenated with the image tokens. For occluded or out-of-
frame hands, we utilize hand-specific learnable variables.
Both stages optimize the time-contrastive objective defined
in Eq. (1), applied to our enhanced dataset Dag`h.

We derive this hand-aware agent-agnostic dataset Dag`h

from EpicKitchen [33], an extensive collection of ego-centric
videos capturing household tasks. Our processing pipeline
detects hand poses using the HaMeR model [34] modified
with a YOLO-v5 [35] backbone for improved efficiency,
projects 3D key points to 2D coordinates using estimated
camera poses, computes each hand’s position as the mean
of its 21 key points, and generates agent-agnostic frames
through ODISE [36] segmentation followed by E2FGVI [37]



inpainting. The resulting dataset comprises frames oci P

RHˆWˆ3`4 that combine processed RGB images with cor-
responding hand coordinates.

C. Policy Learning and Reward Shaping

We extend agent-agnostic action representation to biman-
ual manipulation by learning coordinated motions and forces
for two free-floating proxy agents, subsequently using inverse
kinematics to convert these proxy trajectories into robot joint
commands. For effective grasping, we first identify feasible
graspable poses for target objects using GraspNet [38]. Each
end-effector is represented as an agent-agnostic sphere, with
a grasp considered valid when the proxy’s distance from the
pose is less than 5cm, indicating successful attachment.

With these graspable regions established, we define our
policy learning objective. Given a goal specification g P

RHˆWˆ3`4, comprising both an image of the goal state and
2D projections of desired end-effector positions in camera
space, we employ model-free RL to obtain an action policy
π that maps proxy states pt and environment states st to
actions at “ patp, a

t
f q. Here, atp PR6 specifies target positions

for both proxies during exploration, while atf PR6 defines
their intended forces during interaction. A PD controller
translates these target actions into actual proxy movements.

Our reward function is designed to maximize embedding
similarity between current state ot and goal state g while
promoting effective exploration. Rather than penalizing de-
viations from a single optimal trajectory, we introduce a tilted
reward formulation:

Rpot, g;ϕq “ exppp1`α ¨1Spzt,zgqąβq
Spzt, zgq´β

β
q´1, (2)

where β “Spz0, zgq denotes the initial embedding similarity
between start and goal states, and αą 0 controls reward
scaling. This approach improves upon traditional similarity-
based rewards by requiring states to exceed the initial con-
dition rather than merely maximizing consecutive improve-
ments, facilitating more effective exploration during early
training when policy behavior is predominantly stochastic.

D. Implementation Details

Our implementation consists of two key components: the
visual encoder architecture and the policy learning frame-
work. For the visual encoder, we process images resized to
224ˆ224ˆ3 dimensions and implement LoRA with rank
r “ 4 for the query and value matrices in all self-attention
layers. The encoder training proceeds sequentially: first, the
visual adaptation phase runs for 40 hours on 4 NVIDIA A100
GPUs using Adam optimization with a learning rate of 10´4,
followed by the hand-position integration phase requiring 20
hours on 8 NVIDIA A100 GPUs.

For the RL component, we employ Proximal Policy Opti-
mization (PPO) [39] to train our bimanual manipulation pol-
icy. The proxy agents are configured with a sphere collision
radius of 2cm and an interactive region radius of 5cm. Based
on ablation studies, we set the reward scaling parameter
α“ 3.0. Each manipulation skill requires approximately 3
hours of training on a single NVIDIA 3090 workstation.

IV. EXPERIMENTS

We evaluate Ag2x2’s effectiveness in bimanual manipu-
lation through extensive experiments across diverse manip-
ulation scenarios. Our approach achieves a 73.5% average
success rate across 13 challenging tasks requiring coordi-
nated two-handed interaction, significantly outperforming ex-
isting autonomous methods and policies trained with expert-
designed rewards. This section details our experimental
setup (Sec. IV-A), presents quantitative performance results
(Sec. IV-B), analyzes key design choices through ablation
studies (Sec. IV-C), and provides additional experimental
insights (Sec. IV-E).

A. Experimental Setup

Task Selection: We curated 13 diverse bimanual ma-
nipulation tasks from two established benchmarks: 6 tasks
from Bi-DexHands [1] and 7 from PerAct2 [13]. We selected
tasks based on two criteria: compatibility with gripper-
based manipulation and single-stage structure to ensure well-
defined goal specifications. Multi-stage tasks were excluded
as they require intermediate goal definitions beyond our
current framework.

Implementation: All experiments use two 9-DoF
Franka Emika robotic arms with integrated grippers (each
with 7 arm joints and 2 gripper fingers), simulated in
NVIDIA IsaacGym to leverage its GPU acceleration capabil-
ities for efficient reinforcement learning. For Bi-DexHands
tasks, we directly utilized existing object assets. For PerAct2

tasks, originally implemented in CoppeliaSim, we converted
assets from .ttm to .urdf and .dae formats for IsaacGym com-
patibility. When direct asset migration was not possible, we
substituted comparable alternatives to maintain task integrity.

Evaluation Protocol: Each task begins with the robotic
arms in predefined positions, with goals specified by images
capturing the target state from one of three camera angles
(center, up, down). A task is considered successful when
objects reach the goal configuration within an acceptable
error margin. To ensure robust evaluation, we test each
task under nine different configurations by combining three
initialization seeds with three camera perspectives. All evalu-
ated models were trained with 68 parallel environments over
200 episodes per task.

Comparison to Benchmarks: Unlike PerAct2, our ap-
proach does not require expert-designed waypoints to guide
end-effectors through specific intermediate targets, relying
only on the final position information. Despite this reduced
guidance, Ag2x2 achieves significantly higher success rates
on most PerAct2 tasks than those reported in the original
benchmark [13], demonstrating its superior robustness and
adaptability to complex bimanual manipulation scenarios.

B. Experimental Results

Baselines: We benchmark Ag2x2 against leading ap-
proaches in zero-shot skill learning, including agent-aware
visual representations (R3M [11] and VIP [10]), agent-
agnostic representation (Ag2Manip [12]), and LLM-driven
autonomous reward generation (Eureka [40]). For Eureka,



we disable human feedback to evaluate solely the method’s
intrinsic learning capabilities without task-specific expert
knowledge. Our strongest baseline uses expert-designed re-
wards that directly minimize distances between key object
poses and goal states.

Performance Analysis: As shown in Tab. I, Ag2x2
achieves a 73.5% average success rate across all tasks, sub-
stantially outperforming Ag2Manip (56.4%) and even expert-
designed rewards (63.2%). This improvement is particularly
notable given that Ag2x2 requires no manual reward engi-
neering or task-specific demonstrations.

Method performance varies significantly across tasks.
Agent-aware representations (R3M, VIP) consistently under-
perform due to the visual and kinematic gap between humans
and robots. Ag2Manip, while effective for single-handed
tasks, struggles with bimanual coordination in scenarios like
box pushing and tray lifting. Eureka performs well only on
tasks with easily describable goal states (closing scissors,
pressing buttons) but falters on more complex interactions.
Expert-designed rewards show strong performance on most
tasks but fail in scenarios requiring temporal coordination
between hands and objects, such as (h) put cubes into drawer,
(j) lift tray, and (l) sweep dirt.
Ag2x2 demonstrates remarkable consistency across di-

verse manipulation challenges. It successfully learns 12 of
13 tasks, with only (i) put cube into microwave falling below
50% success rate. Most impressively, it masters deformable

TABLE I: Comparison and ablation results. Success rates across
13 bimanual manipulation tasks from two benchmarks. Success
counts range from 0-9, representing successful attempts out of 9
evaluation runs. Methods compared: R3M, VIP, and Ag2Manip
are visual representation approaches; Eureka uses LLM-generated
rewards without human feedback; expert reward employs manually-
designed reward functions minimizing distance between object
poses and goal states; Ag2x2-H is our ablation that excludes hand-
related features from reward computation; Ag2x2 is our full model
with hand feature integration. Evaluation protocols: Our method
and its ablation, R3M, VIP, and Ag2Manip were evaluated using
3 seeds × 3 camera views; Eureka using 3 seeds × 3 different
generated reward functions; and expert reward using 9 different
seeds. Tasks include: From Bi-DexHands (a-f): close door outward,
close door inward, open pen cap, lift pot, swing cup, close scissors;
From PerAct2 (g-m): push box, put cube into drawer, put cube into
microwave, lift tray, press buttons, sweep dirt, straighten rope.

Method Bi-DexHands PerAct2 Overalla b c d e f Avg. g h i j k l m Avg.

Eureka [40] 0 0 0 2 1 5 14.8% 0 1 0 0 7 2 0 15.9% 15.4%
R3M [11] 0 0 3 0 1 0 7.4% 2 0 4 2 3 3 0 22.2% 15.4%
VIP [10] 1 3 1 7 2 0 25.9% 0 0 4 5 5 3 0 27.0% 26.5%

Ag2Manip [12] 6 9 7 4 3 7 66.7% 2 3 3 3 9 6 4 47.6% 56.4%
expert reward 8 9 6 6 8 9 85.2% 5 0 6 3 5 3 6 44.4% 63.2%

Ag2x2-H 7 4 7 7 4 9 70.4% 5 4 3 5 8 3 3 46.0% 57.3%
Ag2x2 7 6 9 8 7 9 85.2% 6 5 2 7 9 6 5 63.5% 73.5%

object manipulation ((m) straighten rope) without specialized
rewards or demonstrations, suggesting broader applicability
to complex household tasks like laundry organization. Fig. 3
illustrates successful trajectories from representative tasks.

swing cup

close scissors

push box

put cube into microwave

press buttons

sweep dirt

Fig. 3: Qualitative results of bimanual manipulation. Temporal sequences showing successful task execution by our learned policies
across six representative tasks: swinging a cup, closing scissors, pushing a box, placing a cube into a microwave, pressing buttons, and
sweeping dirt. Each row presents the progression of a single task from left to right. Our method generates coordinated trajectories for
both end-effectors, which are converted to joint commands for the two Franka arms through inverse kinematics. Note the synchronized
bimanual coordination required across diverse manipulation scenarios, from precise interactions (scissors, buttons) to force-sensitive
operations (pushing box, sweeping).



Fig. 4: Generalization of learned manipulation skills through imitation policy rollout. This sequence demonstrates an imitation policy
successfully straightening a rope from an unseen initial configuration. The policy was trained on just 12 expert trajectories generated by
Ag2x2 and successfully transfers to novel states. Images progress from left to right, showing coordinated bimanual manipulation that
adapts to the deformable object’s changing state.

TABLE II: Trajectory smoothness analysis. Lower values indicate smoother movements with reduced end-effector acceleration throughout
task execution. All values represent cumulative acceleration magnitude of both end-effectors across successful task completions only,
proportional to m{s2 by a factor of 36. Dashes (-) indicate methods that failed all evaluation runs for that task. For detailed descriptions
of all methods (VIP, Ag2Manip, expert reward, Ag2x2-H, and Ag2x2), refer to Tab. I. Tasks correspond to those listed in Tab. I.

Method Bi-DexHands PerAct2 Avg.a b c d e f g h i j k l m

VIP [10] 2.38 2.11 1.24 1.97 1.85 - - - 2.03 1.69 0.56 0.37 - 1.58
Ag2Manip [12] 1.62 1.62 1.35 1.46 1.60 0.45 1.74 3.98 1.77 1.11 0.48 0.38 0.61 1.36
expert reward 1.70 1.68 1.15 1.00 1.06 0.70 0.58 - 1.99 1.64 0.49 0.39 0.95 1.11
Ag2x2-H 1.65 1.79 1.10 1.04 1.66 0.75 0.67 1.37 1.50 1.43 0.59 1.30 1.13 1.23
Ag2x2 1.62 1.70 1.04 1.53 1.61 0.70 0.48 1.13 2.00 1.24 0.54 0.36 1.04 1.15

Failure Case Analysis: We identify two primary failure
patterns for future improvements. First, object interference
significantly impacts performance in container-based tasks
like (h) put cube into drawer and (i) put cube into mi-
crowave. In these scenarios, the visual salience of container
movements overshadows object placement and hand motion,
leading to suboptimal reward and reduced accuracy. Second,
imperfect bimanual coordination occasionally emerges in
challenging scenarios. In (b) close door inward, failures often
occur when one hand closes the door prematurely before the
other hand positions correctly. Similarly, in (m) straighten
rope, a common failure pattern involves one hand reaching
the target position while the other misses by small margins.

These observations suggest future work should focus
on enhancing feature selection mechanisms for bimanual
coordination and developing more sophisticated attention
frameworks for multi-object interactions.

C. Ablation

To understand the impact of hand position information on
bimanual coordination, we conducted an ablation study. In
Tab. I, we present “Ag2x2-H” (without hands), which learns
directly from videos where human hands have been inpainted
without hand position tokens provided to the model.

This ablation reveals three significant findings. First, re-
moving hand position information causes a consistent 16.2%
performance drop across our task suite, highlighting this
feature’s critical role in facilitating precise bimanual coor-
dination. Second, performance across tasks remains gener-
ally consistent with one notable exception: the microwave
cube placement task (i) shows improved performance in the
ablated model. This counter-intuitive result occurs because
the container’s state changes visually dominate this task,
overshadowing both hand positioning and object motion
signals in reward computation. Third, our ablated model
performs similarly to Ag2Manip despite architectural differ-
ences, confirming that Ag2x2’s superior performance stems

primarily from the incorporation of hand positioning rather
than from switching from ResNet to ViT backbone.

Despite removing hand position information, our ablated
model still outperforms most baseline methods and ap-
proaches the effectiveness of expert-designed rewards. This
suggests our core architectural design remains robust even
without explicit hand positioning cues, while still demon-
strating that hand positioning substantially enhances perfor-
mance for complex bimanual tasks.

D. Imitation Learning

Using Ag2x2, we collected 12 demonstration trajectories
of rope straightening across various initial configurations.
From these demonstrations, we trained an imitation learning
policy that successfully generalizes to novel rope configu-
rations. Figure 4 illustrates the learned policy performing
on an unseen scenario where the rope’s bending direction
is reversed from training examples. This ability to quickly
collect high-quality demonstration data and learn general-
izable policies highlights Ag2x2’s potential for scaling up
bimanual manipulation data collection, addressing a critical
bottleneck in robot learning.

E. Additional Analysis

We examine trajectory characteristics, reward quality, and
proprioception to provide deeper insights into Ag2x2’s per-
formance advantages.

Trajectory smoothness: We quantify motion efficiency
through cumulative end-effector acceleration:

γs “

T
ÿ

t“2

||αL
t ||2 `||αR

t ||2, (3)

where αL
t , α

R
t denote the acceleration of left and right

end-effectors at time t. Lower γs values indicate smoother
trajectories with fewer abrupt velocity changes. As shown in
Tab. II, Ag2x2 generates trajectories with smoothness com-
parable to expert-designed rewards and significantly better



TABLE III: Task progress consistency analysis. Higher values indicate more direct, monotonic progress toward the goal state. Values
represent Spearman Rank Correlation between temporal frame sequence and visual similarity to the final goal state, measuring how
consistently the agent progresses toward task completion. Positive values near 1.0 indicate steady progress, while values near 0 or negative
suggest inefficient paths with unnecessary motions or regressions. Dashes (-) indicate methods that failed all evaluation runs for that task.
For detailed descriptions of all methods and tasks, refer to Tab. I.

Method Bi-DexHands PerAct2 Avg.a b c d e f g h i j k l m

VIP [10] .724 .900 .021 .136 -.154 - - - .699 -.247 -.249 .056 - .210
Ag2Manip [12] .797 .851 .692 .302 .719 .398 .942 .025 .784 .405 -.244 -.092 .974 .504
Ag2x2-H .824 .820 .789 .094 .288 .669 .908 .106 .719 .575 -.223 .136 .981 .514
Ag2x2 .822 .812 .685 .192 .517 .804 .920 .018 .712 .364 -.185 .077 .963 .516

TABLE IV: Impact of proprioception on performance. Success rates when explicitly incorporating proprioceptive information (end-
effector positions) in policy training. Success counts range from 0-9, representing successful attempts out of 9 evaluation runs (3 seeds ×
3 camera views). All three methods use the same visual backbone but differ in their use of proprioceptive signals: Ag2Manip with limited
proprioception, Ag2x2-H with partial integration, and Ag2x2 with our complete proprioceptive integration approach. For detailed task
descriptions, refer to Tab. I.

Method Bi-DexHands PerAct2 Overalla b c d e f Avg. g h i j k l m Avg.

Ag2Manip [12] 6 9 5 4 5 8 68.5% 2 1 2 2 9 5 5 41.3% 53.8%
Ag2x2-H 7 8 5 6 3 9 70.4% 3 0 6 3 8 4 5 46.0% 57.3%
Ag2x2 7 9 9 7 7 9 88.9% 5 2 4 3 9 5 5 52.4% 69.2%

than the highest-performing baseline methods, demonstrat-
ing the advantage of coordination-aware representations in
generating stable end-effector motions.

Reward Consistency: To evaluate how well our visual
representations align with task progress, we use Spearman
Rank Correlation [41] to measure the relationship between
temporal sequence and goal-state similarity. Table III shows
Ag2x2 achieves superior correlation compared to baselines,
indicating more consistent task progression representation.

Our analysis also reveals an important limitation of cor-
relation metrics for certain tasks. For instance, the button-
pressing task (k) shows a negative correlation despite achiev-
ing a 100% success rate. This occurs because discrete state
changes (button color transitions) create discontinuities in
the visual representation space that don’t align with steady
progress measurement.

Proprioception: To determine whether Ag2x2’s gains
stem from hand information during pre-training or propri-
oception (specifically, end-effector positions) during policy
learning, we conducted a controlled experiment. We com-
pared three models (Ag2Manip, Ag2x2, and Ag2x2-H),
adding a reward term to explicitly include proprioception
by encouraging end-effector alignment with target positions.
As shown in Tab. IV, the performance differences between
models with proprioception remain consistent with our main
results in Tab. I. This confirms that Ag2x2’s advantages
primarily stem from incorporating hand information during
pre-training rather than from proprioceptive signals during
policy learning.

V. CONCLUSION

We introduced Ag2x2, a framework addressing zero-shot
bimanual manipulation through coordination-aware visual
representations. By simultaneously encoding environmental
state and hand positions, Ag2x2 achieves a 73.5% suc-
cess rate across 13 complex bimanual tasks, significantly

outperforming baselines and matching expert-designed poli-
cies. Our approach demonstrates particular strength with
deformable object manipulation and supports effective imi-
tation learning, establishing a foundation for scalable robotic
manipulation.

Limitations: Our method is constrained by its repre-
sentation of goals as single static images with end-effector
positions. Without intermediate trajectory states, Ag2x2 can-
not support tasks where intermediate dynamics are essential.
For example, when tasked with “throw a ball into a bin”
with only the final goal image showing the ball in the
bin, the system would attempt to directly place rather than
throw the ball. Similarly, tasks with unobservable dynamics
(like turning on a microwave without visual feedback on
its internal state) remain challenging. While a high-level
planner generating intermediate visual and kinematic steps
could address some issues, fundamental limitations remain.

Additionally, our current approach only models end-
effector positions, limiting applications to simple grippers
rather than complex hands with articulated fingers. Extending
Ag2x2 to dexterous manipulation would require substantial
work in understanding intricate finger coordination beyond
our current scope. Nevertheless, we believe our approach of
using representations pre-trained on readily available human
videos provides a promising foundation for improving learn-
ing efficiency even for more complex manipulation tasks.

Implications: Ag2x2 enables autonomous generation
of high-quality demonstrations, reducing reliance on human-
generated data in robotic training. This creates opportunities
for accelerating robotic learning across diverse environments.
By enabling autonomous learning of complex bimanual ma-
nipulation, our work advances generalizable robot capabili-
ties for sophisticated physical interactions. The demonstrated
success suggests coordination-aware visual representations
offer a promising direction for robot manipulation.
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