
Autonomous Character-Scene Interaction Synthesis from Text Instruction • A1

A IMPLEMENTATION DETAILS
In this section, we describe the detailed architecture of each module
in our framework, along with the training configurations.

A.1 Motion Diffusion Module
The motion diffusion module employs a Transformer encoder archi-
tecture [Vaswani et al. 2017] with 8 layers and 16 attention heads,
which has proven highly effective in modeling sequential data.
The input to the model consists of tokens representing the noised
body joints and additional tokens for the condition information. To
achieve auto-regressive generation, we fix the first two tokens of the
current segment, copy the value of the last two frames from the last
segment, and zero out the noise applied to them, during both train-
ing and sampling. In addition to the body joint tokens, four other
tokens are introduced to incorporate the conditions, representing
the scene, text, pelvis, and hand goal location, which provide crucial
context for generating coherent and relevant motions. The details
of these conditioning tokens will be discussed in the following three
subsections. An embedding of diffusion timestep is added to the
four conditioning tokens to incorporate temporal information into
the model. All tokens undergo a positional encoding before being
fed into the Transformer model.

A.2 Scene Encoder
The current scene voxel and its predictive counterpart are concate-
nated along the channel dimension, creating a unified 64-channel,
32x32 image. This image is segmented into 8x8 patches, which serve
as input for a ViT [Dosovitskiy et al. 2021] consisting of 6 layers and
16 attention heads. The ViT processes these patches and produces
a 512-dimensional feature vector. This vector is then used as the
scene conditioning token in the motion diffusion module, ensuring
context-aware motion synthesis.
When the target action involves interactions unrelated to the

scene, such as drinking water from a bottle or talking on the phone,
we mask the scene conditional token as all zeros. This approach is
intended to prevent interference from scene information during the
generation process of scene-independent interactions.

A.3 Frame-embedded Text Encoder
We employ the CLIP encoder [Radford et al. 2021] to convert raw
text descriptions into 768-dimensional latent vectors. These vectors
are then transformed into 512-dimensional vectors using an MLP
model. Simultaneously, a sinusoidal positional encoder converts the
frame number from an integer to a 512-dimensional vector, forming
the frame embedding. We then add the text embedding to the frame
embedding and pass the result through another MLP layer to obtain
the final text conditional token, the input for our motion diffusion
module.

During the sampling phase, at each step of autoregressive genera-
tion, the frame number input to the model increases as the number
of generated frames increases. This aligns with the increased rate
during training. In particular, by controlling the rate at which the
frame number increases, we can adjust the total duration of the
generated action. Due to the periodic nature of locomotion, such as

walking, we set the frame number to zero during both the training
and sampling processes for locomotion.

A.4 Goal Encoder
We train separate MLPs to embed locomotion and hand goals, re-
sulting in embeddings for pelvic and hand goals, respectively. For
locomotion tasks, we remove the vertical component of the goal
location and retain only the two-dimensional horizontal coordi-
nates as input for the model. In object-reaching tasks, the target
coordinates of the hand serve as input for the model. We mask the
pelvis or hand goal tokens as all zeros for actions that do not involve
locomotion or hand reaching.

A.5 Autonomous Scheduler
Our scheduler model generates a value ranging from 0 to 1, which
indicates whether the previously generated motion clip has com-
pleted its entire semantic motion. This value subsequently deter-
mines whether the current motion clip should maintain the existing
semantic or initiate the first motion clip of a new semantic. Our
Scheduler model utilizes a Transformer encoder with 3 layers, 8 at-
tention heads, and a hidden dimension of 512. We leverage a model
identical to the structure described in Section 3.4 to embed the cur-
rent frame number and the given language instruction as a text
conditioning token. This token, along with other motion frames,
serves as the input to the Transformer encoder.
Due to the simplicity of this task, we train the scheduler model

on the entire LINGO dataset for only 5 epochs. We use a batch size
of 1024 and a learning rate of 0.0001, employing the Adam optimizer
with its default parameter settings. The model converges effectively
and demonstrates strong performance.

A.6 Training Configuration
The training of our motion diffusion module is conducted with a
carefully selected set of hyperparameters to ensure optimal perfor-
mance. We utilize a learning rate of 0.0001. The number of diffusion
timesteps is fixed at 100, balancing computational feasibility and the
quality of generated samples. In addition, we adopt a linear noise
schedule, which gradually increases noise levels throughout the
diffusion process. We use 4 NVIDIA A100 GPUs to train over 500
epochs with a batch size of 1024, ensuring sufficient exposure to the
training data for convergence. These hyperparameter choices are
informed by prior literature and empirical experimentation.

B LINGO DATASET
In this section, we elaborate on the recording process of the LINGO
dataset and statistics of the LINGO dataset in detail.

B.1 How LINGO Dataset Is Produced
Producing a VR-assisted motion-captured dataset is a complex pro-
cess that involves multiple people, specialized equipment, and cus-
tom software. In this section, we provide an overview of the key
components and steps involved in this process.

B.1.1 People Participants. The MoCap process involves three main
roles.

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

A2 • Nan Jiang, Zimo He, Zi Wang, Hongjie Li, Yixin Chen, Siyuan Huang, and Yixin Zhu

Posture: squat

Location: near the table

Hand objects: None

Human State

Posture: stand

Location: near the table

Hand objects: bottle

Human State

Posture: stand

Location: near the chair

Hand objects: bottle

Human State

Posture: stand

Location: near the table

Hand objects: book

Human State

Locomotion

Walk to [chair].

Walk to [wardrobe].

Walk to [bed].

······

Interaction

Drink from the bottle.

Sit on the table.

Lie on the bed.

Talk on the phone.

Put down the bottle on table.

······

Motion w/o Interaction

Squat down.

Stand up.

Bend forward.

Kneel down.

······

Maintain Posture

Maintain standing posture.

Maintain squatting posture.

Maintain lying posture.

Maintain seated posture.

······

Posture: stand

Location: near the chair

Hand objects: bottle

Human State

Posture: stand

Location: near the table

Hand objects: None

Human State

Posture: squat

Location: near the table

Hand objects: bottle

Human State

Posture: stand

Location: near the table

Hand objects: bottle

Human State

Locomotion

Walk to [chair].

Walk to [wardrobe].

Walk to [bed].

······

Interaction

Drink from the bottle.

Sit on the table.

Lie on the bed.

Talk on the phone.

Put down the bottle on table.

······

Motion w/o Interaction

Squat down.

Stand up.

Bend forward.

Kneel down.

······

Maintain Posture

Maintain standing posture.

Maintain squatting posture.

Maintain lying posture.

Maintain seated posture.

······

Stage n-1 Transition from Stage n-1 to Stage n Stage n Transition from Stage n to Stage n+1 ············

······ ······

······

······

Fig. A1. Motion Planner. A Markov Chain generates the next instruction to guarantee plausible interaction and maintain a balanced distribution of motion
types. The Motion Planner provides language instructions to the Actor.

Actor. The Actor performs the motions while wearing a MoCap
suit and a VR headset.

Controller. The Controller provides the Actor with language de-
scriptions of the motions to perform.

Assistant. The Assistant marks the frames when the Actor picks
up or puts down hand-held objects, ensuring accurate synchroniza-
tion between the motion data and the object interactions.

B.1.2 MoCap Add-on. We designed a custom Blender add-on to
facilitate the MoCap process. This addon has three main functions.
First, it displays the live motion of the Actor in the physical environ-
ment, superimposed on the virtual scene. This allows the production
team to identify and correct errors such as penetration between
the Actor’s virtual representation and the scene objects or erro-
neous motion capture data. Second, the addon shows the Actor’s
VR headset view, which helps the team adjust the motion capture
setup to suit the current motion type and Actor best. Third, the
add-on provides a third-person view that follows the Actor’s move-
ment, similar to a third-person video game camera. This helps the
Controller give orientation-related locomotion instructions, such
as “walk to the right.” The addon also links the VR and VICON
systems, projecting rendered views and language instructions to
the Actor and repeatedly aligning the real-world and virtual-world
coordinates to maintain synchronization.

B.1.3 Motion Planner Add-on. Another custom addon, the Motion
Planner (Figure A1), generates a sequence of instructions for the
Actor to perform in the current scene as a Markov Chain. The
input to the Motion Planner is a list of candidate interactions, their
properties, and constraints. For example, some interactions may
require the use of one or both hands or may have specific starting or
ending positions. The Motion Planner considers these constraints
and outputs a sequence of motion instructions that satisfy them.
The Motion Planner also helps maintain a balanced distribution in
the dataset. The Controller advances the instructions displayed in
the Actor’s VR headset by pressing a “go to next instruction” button.

B.1.4 Preparation. Before starting the MoCap process, the scene
files are prepared in Blender. This involves selecting scene objects
for the Actor to interact with and adding small interactable objects as
needed. For sittable objects such as sofas and chairs, placeholders are
placed in the physical environment to support the Actor during the
capture session. The interaction types for each scene are specified
and input to the Motion Planner. The VICON system is warmed
up and calibrated to ensure accurate tracking. The VR headset is
initialized by aligning the virtual world with the real world using a
calibration procedure.

B.1.5 Motion Capturing. During the MoCap session, the Actor
stands in a plausible locationwithin the scene. The Controller checks
that everything is ready and displays the first motion instruction
in the Actor’s headset. For interactive motions, such as picking

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

Autonomous Character-Scene Interaction Synthesis from Text Instruction • A3

up or manipulating objects, the Controller determines when the
interaction is finished and advances to the next instruction. For
grasping motions, the Assistant marks the time frames when the
Actor grasps or releases the object, ensuring that these critical events
are accurately recorded in the dataset and the object is attached to
hands correctly. For locomotion, the Controller guides the Actor to
the goal location using arrow keys, with specific direction-related
information projected in the VR headset and recorded as annotations
for the LINGO dataset.

During the MoCap process, the Actor performs the actions based
on the language instructions projected on their VR headset. The
VICON system tracks and records their body movements in real-
time as the Actor moves and interacts within the physical space.
Simultaneously, the captured motion data is instantly transmitted
to the virtual scene, where the Actor’s virtual body is rendered
in real-time. This real-time reconstruction allows the Actor to see
their virtual representation within the VR headset, creating a highly
immersive and interactive experience.

B.1.6 Data Post-processing. After the MoCap session, the raw mo-
tion capture data is split into segments according to motion types.
The Motion Planner Add-on accompanies each segment with a raw
text annotation describing the performed motion. To enhance the
richness and variety of annotations, GPT-4 is used to augment the
raw text into multiple versions, providing alternative descriptions
and additional context. We also double the data size by mirroring
both the motions and the annotations.

B.2 Dataset Statistics
B.2.1 Interaction Types. The LINGO dataset covers 40 types of
motion listed in Table A1, including non-interactive motions such
as locomotion and maintaining posture. For interactive motions,
the LINGO dataset contains interaction with static scene objects
(e.g., sit down, lie down) and small hand-held objects (e.g., cellphone,
gamepad). Figure 6 counts the number of occurrences of eachmotion
type, and Figure A2 shows the distribution of the motion length.
The detailed categorization is listed in Table A1.

B.2.2 Locomotion Goal Distribution. In the analysis of locomotion
clips, we visualize the distribution of goal locations in Figure A3
represented in the canonical coordinate system of the first frame.
This coordinate system is defined to align the character’s initial
orientation with the positive yaw direction. Using this consistent
frame of reference, we can compare and study the relative positions
of the goal locations across different clips. The plot represents the
spatial distribution of the goal locations, with the origin (0, 0) corre-
sponding to the character’s starting position in the first frame. The
plot’s x-axis and y-axis represent the lateral and forward/backward
directions, respectively, relative to the character’s initial orientation.

B.2.3 Motion Length Distribution. Figure A2 presents the motion
length distribution for various motion types in the LINGO dataset.
Each violin represents a motion type, with the width of the violin
indicating the density of data points at different motion lengths.
The vertical axis measures the motion length, while the horizontal
axis lists the motion types.

Table A1. Motion types of LINGO.

Motion Description Motion Name

Move from one place to
another by taking steps.

walk forward
walk back
walk front left
walk front right

Change the orientation of
the body.

turn left
turn right

Change to a standing
position.

stand up
get up

Interact with hand-held
objects.

pick up
put down
take photo
turn on
write
type on
read
play1
drink
eat
talk on
listen to music
brush teeth
toss
swing
wave

Pick up and put down
hand-held objects.

pick up
put down

Stationary motions.

stand still
maintain lie
maintain sit
maintain bend
maintain kneel
maintain squat

In-place motions.

bend forward
straighten up
kneel down
squat down
crawl

Interact with static scene
objects.

sit down
lie down
punch
kick
wash
take shower
rotate
play2
type

1 Play game and guitar. 2 Play drums and piano.

The motion lengths span from 1 to 12 seconds across all motion
types. However, most of the data points lie between 2 and 6 seconds.
The median motion length for most motion types is around 4-5
seconds. Some motions, like “walk forward,” are close to a normal

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

A4 • Nan Jiang, Zimo He, Zi Wang, Hongjie Li, Yixin Chen, Siyuan Huang, and Yixin Zhu

wa
lk

 fo
rw

ar
d

wa
lk

 b
ac

k
sit

 d
ow

n
st

an
d

up
pi

ck
 u

p
wa

lk
 fr

on
t l

ef
t

wa
lk

 fr
on

t r
ig

ht
tu

rn
 le

ft
tu

rn
 ri

gh
t

pu
t d

ow
n

m
ai

nt
ai

n
st

an
d

m
ai

nt
ai

n
sit

pl
ay

st
an

d
st

ill
re

ad
ty

pe
 o

n
dr

in
k

ge
t u

p
wa

sh ea
t

wa
ve

wr
ite

ta
lk

 o
n

tu
rn

 o
n

ta
ke

 sh
ow

er
ta

ke
 p

ho
to

kn
ee

l d
ow

n
lis

te
n

to
 m

us
ic

lie
 d

ow
n

be
nd

 fo
rw

ar
d

bl
ow

 o
ut

to
ss

sq
ua

t d
ow

n
st

ra
ig

ht
en

 u
p

ro
ta

te
sw

in
g

br
us

h
te

et
h

pu
nc

h
m

ai
nt

ai
n

lie ki
ck

m
ai

nt
ai

n
be

nd
m

ai
nt

ai
n

kn
ee

l
m

ai
nt

ai
n

sq
ua

t
cr

aw
l

2

4

6

8

10

12

Fig. A2. Motion length distribution of each motion type in LINGO dataset.

1.0 0.5 0.0 0.5 1.0
X-axis

0.5

0.0

0.5

1.0

1.5

Y-
ax

is

100

101

102

103

104

Fr
eq

ue
nc

y

Fig. A3. Distribution of goal locations for all locomotion clips in the
local coordinate system of the first frame. The character is aligned to
initially face the y-axis direction. Unit: meter.

distribution, while others, such as “sit down” or “stand up,” have a
longer tail towards higher motion lengths due to the varied Actor
preferences. Some motion types, such as “lie,” have significantly
longer motions. Motions with respect to locomotion, such as “walk
forward” and “walk front left” have similar distributions, while
interactive motions have distinct distributions compared to the rest.

B.2.4 Motion Occurance Count. Figure 6 displays the number of
occurrences for each motion type in the LINGO dataset. The vertical

axis represents the count on a logarithmic scale, while the horizontal
axis lists the various motion types.

The number of occurrences varies acrossmotion types. Locomotion-
related motions have the highest number of occurrences, exceeding
1000 instances in the dataset. This is because locomotion occurs
between two interaction motions. Most interaction motion types,
such as “drink,” “eat,” and “wash,” have around 200 occurrences or
segments in the LINGO dataset.

C TASK PLANNER
We show a workable pipeline that leverages GPT4-o to break down
complex instruction into sub-tasks.

- prompt = “I need you to help me complete a task
now. I will give you a target action. The target action
is:“+action+.” You need to give in English a number
of steps that I need to complete the target action.
The steps should be as concise as possible without
the need for irrelevant attributives. The details of
the interaction action are not required. For example,
there is no need to open the game console. The steps
are divided into three categories: locomotion, grasp,
and interaction, where locomotion only includes the
movement of the person’s position, Grasp only consists
of the grabbing and touching of objects, and interaction
includes people’s operations on the appliance (such as
listening to music with headphones, turning the door
handle to open the door (excluding grabbing the door
handle))), indicate the hand when it comes to hand
movements. Please complete this task according to some
step examples I gave you. Example: “+str(text_list)+,”

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

Autonomous Character-Scene Interaction Synthesis from Text Instruction • A5

output format: [{"step" :,"step_id":1,"category":},...],
only output the final format, no other nonsense”
- output = [{"step": "walk to the sofa", "step_id":

1, "category": "locomotion"}, {"step": "sit down on the
sofa", "step_id": 2, "category": "locomotion"}, {"step":

"pick up remote with left hand", "step_id": 3, "category":
"grasp"}, {"step": "turn on TV with left hand", "step_id":
4, "category": "interaction"}, {"step": "watch TV", "step_id":
5, "category": "interaction"}]

SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan.

