
A. Additional Qualitative Results
We show additional qualitative comparisons for three edit-
ing tasks: style transfer (Figs. A4 to A7), body part re-
placement (Figs. A8 to A11), and fine-grained adjust-
ment(Figs. A12 to A14). We highly recommend viewing
our project website for compelling demonstrations across
diverse scenarios.

B. Additional Implementation Details
B.1. Keypoint-Based Motion Representation
Our keypoint-based motion representation uses the first 22
joints from SMPL-X [41] as primary body joints. The two
additional head joints and four finger joints (ring and in-
dex fingertips of both hands) correspond to the following
SMPL-X indices:
• Joint 23: left eye smplhf.
• Joint 24: right eye smplhf.
• Joint 25: left index1.
• Joint 34: left ring1.
• Joint 40: right index1.
• Joint 49: right ring1.
These additional joints enable natural gaze behavior and
head tracking through eye joints, while fingertip joints pro-
vide enhanced control over hand poses as end-effectors.

B.2. Keypoint Canonicalization and Nomalization
We canonicalize motion segments in a y-up coordinate sys-
tem to simplify the learning space. For each training seg-
ment, we apply a transformation to the entire keypoint se-
quence that translates the first frame’s pelvis to the horizon-
tal origin (x and z) and rotates around the y-axis to align the
character’s initial forward direction with the positive z-axis.
During inference, segments are merged through decanoni-
calization. Specifically, for segment i, we align it with seg-
ment i � 1 by computing the transformation between their
connecting frames (first frame of segment i and second-to-
last frame of segment i� 1) using the Kabsch algorithm on
the rigid triangle formed by the pelvis and hip joints.

In addition to canonicalization, we normalize each spa-
tial dimension (x, y, and z) of the keypoint data to the stan-
dardized range [�1, 1] using channel-specific scaling fac-
tors. These factors are determined by the minimum and
maximum values of each channel across the dataset. We
capture 95% of the data range to compute these scaling fac-
tors with the outliers removed. During inference, we reverse
this normalization by applying the inverse scaling factors to
the model output.

B.3. Converting between Motion Representations
To convert SMPL-X parameters to keypoint representation,
we perform forward kinematics using the official SMPL-X
codebase, which transforms sequential pose parameters into

3D joint locations. We set hand and face parameters to zero
vectors to focus on core body movements.

Converting keypoint representation to SMPL-X param-
eters involves a two-stage approach. First, we standard-
ize each frame by translating the 28 keypoints to center
the pelvis at the origin. The translated keypoints (84-
dimensional input) are processed through a 3-layer MLP
(512 hidden units, ReLU activation, layer normalization) to
estimate the 66-dimensional SMPL-X body pose parame-
ters, including global orientation. Second, we refine these
initial body pose estimates and predict the global transla-
tion through optimization. We iteratively compute keypoint
locations via SMPL-X forward passes and minimize the
mean squared error between the computed and targeted key-
points. Optimization is performed for 120 iterations using
the Adam optimizer [34] with a learning rate of 0.01.

B.4. Module Details
In our motion diffusion model, noisy motion frames from
the canonicalized sequence Mt are encoded through an
MLP encoder, where a single linear layer projects the in-
put from 84 dimensions (28 joints ⇥ 3) to 512 dimensions.
The original motion sequence Mori is encoded through a
separate MLP encoder with identical architecture. We im-
plement a Transformer encoder [59] as the UNet backbone
with 6 layers, 16 attention heads, and a dropout rate of 0.1.
The encoded vectors from Mori are added frame-wise to the
encoded noisy motion to preserve reference motion infor-
mation. A conditional token combines text condition em-
bedding, progress indicator, and diffusion step embedding
for temporal context. The Transformer encoder then pro-
cesses the entire token sequence, followed by an MLP de-
coder projecting the output back to 84 dimensions.

For the body part coordinator D, we adopt a Transformer
encoder with identical architecture to our main model. The
transformer’s outputs are mean-pooled temporally and pro-
cessed by an MLP to classify whether the input motion is
spatially composed. To ensure robustness during diffusion
sampling, we inject random noise into the training keypoint
sequences, with magnitude matching the noise levels of the
last 20 diffusion steps.

B.5. Frame Rate
We downsample motion sequences to 10 FPS during train-
ing and inference for computational efficiency. For com-
patibility with standard evaluation protocols, the generated
keypoint sequences are later upsampled to 20 FPS during
SMPL-X conversion (Appendix B.3) to match the original
dataset’s frame rate.

B.6. Hyper-Parameters for Guidance
During inference, we apply classifier-free guidance [20]
with weight w = 3 to enhance conditional signals through

https://awfuact.github.io/motionrefit/


linear extrapolation. For the body part coordinator, we set �
to 1.0 and apply classifier guidance during the final 20 steps
of the auto-regressive sampling process.

C. Additional Experiment Details and Results
C.1. Training Details
In our experimental framework, all models undergo train-
ing for 1,500 epochs using the DDPM scheduler [21], with
varying numbers of diffusion steps across different meth-
ods: our approach employs 100 steps, TMED [7] uses 300,
and MDM-BP [56] requires 1,000, following their respec-
tive recommended configurations. We employ the AdamW
optimizer [38] with a learning rate of 1e-4 and a weight de-
cay of 0.01. The learning rate follows a linear decay sched-
ule. During training, we use a batch size of 1024 sequences,
with each sequence containing W frames. The training pro-
cess is conducted on a setup of 4 NVIDIA RTX 3090 GPUs,
with the entire training cycle completed within 36 hours.
The model checkpoints are saved every 50 epochs, and we
select the best model based on validation performance.

C.2. Adaption of Baselines
For baseline comparisons, we adapt MDM [56] with
inpainting-based motion editing, where specific body parts
are modified according to the provided masks. We enhance
the baseline by supplying explicit masking information and
initializing diffusion from the original motion sequence. We
introduce an important modification to the standard MDM
approach: while most of the diffusion process maintains
strict masking constraints, we release these constraints dur-
ing the final 20 diffusion steps, allowing the model to adjust
the entire body. This modification enables natural whole-
body adaptations that may be necessary for coherent motion
synthesis. For TMED [7], we maintain strict adherence to
the original implementation, utilizing the exact configura-
tions and parameters as specified in the authors’ codebase.

C.3. Dual Interpretation of the E2S Score
We argue that the interpretation of Edited-to-Source Re-
trieval (E2S) scores should be task-dependent.

For fine-grained adjustments (e.g., modifying arm raise
height), higher E2S scores are desirable as they indicate pre-
served motion characteristics with successful subtle modi-
fications. Similarly, for MotionFix dataset [7] tasks which
involve minor adjustments like refining limb positions and
trajectories, high E2S scores demonstrate proper mainte-
nance of source motion semantics.

However, for substantial editing tasks like body part re-
placement or style transfer, the E2S scores should align
with the reference dataset’s distribution rather than maxi-
mizing similarity to the source. In these cases, lower E2S
scores may actually indicate successful editing, as the mo-

tion should significantly deviate from the source to reflect
the intended modifications. The accuracy of these major
changes should instead be evaluated through the Edited-to-
Target Retrieval score, which measures alignment with the
target characteristics.

C.4. Ablation Results of Classifier Guidance
In Fig. A1, we evaluate how body part coordinator performs
across different hyper-parameters. The x-axis shows guid-
ance strength �, while the y-axis indicates the number of
steps where classifier guidance is applied. We report both
E2T AvgR (upper) and FID (lower) for the body part re-
placement task. Setting � = 1.0 and applying 20 guidance
steps produces optimal results.

Figure A1. Ablation results on classifier guidance. We illustrate
the E2T AvgR (upper) and FID (lower) performance of MotionRe-
Fit for the body part replacement task. The x-axis represents guid-
ance strength, whereas the y-axis depicts guidance steps count.

C.5. Results of Fine-Grained Adjustment
Quantitative results in Tab. A1 demonstrate that our full
method achieves superior performance across most metrics
for the fine-grained adjustment task. The retrieval metrics
reveal that the motion characteristics have been maintained,
with successful fine-grained adjustments.



Table A1. Quantitative comparison on fine-grained adjustment task. For each metric, we repeat the evaluation 10 times. Arrows (!)
indicate metrics where values closer to real data are better. Bold denotes best performance.

Method FID# Diversity! FS" Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1" R@2" R@3" AvgR# R@1" R@2" R@3" AvgR#

Real Data 0.02 30.57 0.97 39.54 54.65 61.16 5.53 100.0 100.0 100.0 1.00
MDM-BP [56] 0.62 32.70 0.92 28.12 34.38 38.02 10.41 16.45 24.52 30.21 11.60
TMED [7] 0.33 31.13 0.94 60.16 72.66 82.03 2.66 29.69 44.01 52.08 6.97
TMED w/ MCM 0.33 31.42 0.94 62.8 74.78 87.0 2.61 32.22 45.03 54.83 6.56
Ours w/o MCM 0.34 31.08 0.95 81.77 92.45 93.49 1.48 34.11 48.70 57.03 5.77
Ours full 0.29 31.29 0.95 85.16 92.97 95.31 1.38 42.45 56.25 62.76 5.12

Table A2. Ablation analysis for fine-grained adjustment. Results show means across 10 evaluation runs, with bold indicating best result.

Method FID# Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1" R@2" R@3" AvgR# R@1" R@2" R@3" AvgR#

1% MCM 0.34 81.77 92.45 93.49 1.48 34.11 48.70 57.03 5.77
5% MCM 0.37 86.72 95.57 97.14 1.30 34.17 50.00 57.81 5.65
10% MCM 0.31 82.81 92.71 95.31 1.42 37.24 51.30 59.11 5.32
20% MCM 0.29 85.68 91.93 94.27 1.45 39.06 52.08 60.68 5.36
12% data 0.32 81.51 91.67 94.53 1.56 40.10 58.07 67.71 4.74
24% data 0.31 82.03 92.19 95.83 1.42 41.93 59.11 67.45 4.71
60% data 0.30 84.90 92.45 96.09 1.38 41.67 55.47 63.54 5.02
Ours full 0.29 85.16 92.97 95.31 1.38 42.45 56.25 62.76 5.12

Table A3. Quantitative comparison with TMED [7] on MotionFix using the full dataset [7]. Results show means across 10 evaluation
runs, with bold indicating best result.

Method FID# FS" Edited-to-Source Retrieval Edited-to-Target Retrieval

R@1" R@2" R@3" AvgR# R@1" R@2" R@3" AvgR#

Real Data 0.010 0.98 20.83 33.66 40.47 33.13 64.36 88.75 95.56 1.74
MDM-BP [56] 0.145 0.90 30.21 36.82 40.47 106.05 8.69 14.71 18.36 180.99
TMED [7] 0.129 0.92 22.41 34.45 40.57 31.42 14.51 21.72 28.73 56.63
Ours 0.120 0.96 43.77 56.72 64.13 24.09 14.13 23.52 30.53 54.06

Tab. A2 presents quantitative comparisons between our
method and ablation variants on the fine-grained adjustment
task. While increasing the MotionCutMix Ratio generally
enhances results, we find that a lower ratio of 5% actually
achieves optimal performance, outperforming higher ratios
including 100%. This phenomenon can be attributed to the
inherent consistency of editing patterns across fine-grained
motion adjustments. Additionally, our experiments show
that varying the size of the annotated dataset produces only
marginal differences in performance metrics. This finding
suggests that our method achieves effective generalization
even with a smaller annotated dataset, likely because our
large-scale training set already encompasses a comprehen-
sive range of fine-grained adjustment scenarios.

Figs. A12 to A14 showcase visual comparisons between
our method and ablations across diverse editing instruc-
tions, demonstrating our full method’s superiority in pro-
ducing precise and natural motion edits.

C.6. Results on the MotionFix Dataset
Evaluation Settings For TMED [7] compatibility, we
use a 22-keypoint representation aligned with the SMPL
model [37], instead of the 28-keypoint SMPL-X format
used in our main method. The conversion process between
keypoint representation and SMPL parameters remains sim-
ilar to the one described in Appendix B.3.

For our auto-regressive framework, we preprocess the
MotionFix dataset by segmenting continuous motions into
clips and applying canonicalization. For retrieval-based
metrics evaluation, we use the original TMR check-
point [43] to ensure consistent comparison with previously
reported results.

Comparison on the Entire Test Set Tab. A3 shows full-
scale evaluation results on the MotionFix benchmark com-
paring our method against TMED and MDM baselines.
Consistent with the batch-wise evaluation, our method
demonstrates superior performance in both E2T scores for



Table A4. Breakdown of inference time on a single RTX 3090
GPU. Our optimal setting achieves real-time inference speed.

Window
size

Diffusion
sampling

Body part
coordinator

SMPL-X
optimization

Total
(seconds) FPS

2-frame 0.142 0.014 0.067 0.223 8.97
8-frame 0.355 0.036 0.106 0.497 16.10
16-frame 0.474 0.046 0.126 0.646 24.76

editing accuracy and E2S scores for motion preservation.
Most notably, we achieve substantially higher foot contact
scores, indicating significantly improved physical plausibil-
ity and overall motion quality.

For detailed qualitative comparisons and motion visual-
izations that further illustrate these improvements, we direct
readers to Appendix A.

C.7. Real-Time Inference
In Tab. A4, we provide a breakdown of inference time on a
single RTX 3090 GPU. Despite the auto-regressive nature,
inference with a 16-frame window size (our optimal setting)
achieves real-time speed. Furthermore, the motion coordi-
nator is applied only during the final few diffusion steps,
adding minimal overhead to the overall computation.

D. Additional Details on the STANCE Dataset
D.1. Body Part Replacement
Our body part replacement subset extends Hu-
manML3D [18] through a two-phase annotation process
capturing both body part participation and detailed motion
descriptions.

Mask Annotation The first phase focuses on mask anno-
tation, where we developed specialized visualization soft-
ware to streamline the annotation process. As shown in
Fig. A2, this tool renders HumanML3D motion sequences
in 3D and offers annotators a selection of predefined body
part masks and their combinations. Annotators can play,
pause, and scrub through the animation while making their
selections based on direct visualization of the motions. For
each sequence, annotators identify which body parts are ac-
tively participating in meaningful movements, as opposed
to parts that remain relatively static or perform only sup-
porting motions. This visual-based annotation approach
distinguishes our dataset from previous works that rely
solely on language model interpretation of text descrip-
tions to determine body part involvement [6]. We employed
five trained annotators who processed sequences from Hu-
manML3D, resulting in multiple mask annotations per se-
quence.

Detailed Annotation The second phase involves creating
detailed descriptions for the movements of designated body
parts. We initialize this process using GPT-4 to obtain the

Figure A2. Screenshot of our annotation software.

original HumanML3D motion descriptions and specific in-
structions to focus on particular body parts while excluding
others. For example, given a motion described as “a per-
son walks forward while waving their arms,” and focusing
on the arms, the LLM might generate “waves arms enthusi-
astically from side to side.” These initial descriptions then
undergo careful refinement by human annotators who en-
hance their accuracy, naturalness, and linguistic diversity.
This combined approach leverages both automated assis-
tance and human expertise to create approximately 13,000
rich, precise annotations of body part movements. Each
motion sequence receives 2-4 different body part-specific
descriptions, creating a diverse set of potential editing tar-
gets.

D.2. Motion Style Transfer
We construct a motion style transfer dataset by profession-
ally recreating sequences from HumanML3D [18] using
the high-fidelity Vicon motion capture system. In our cap-
ture sessions, we enlisted trained performers who were in-
structed to replay selected HumanML3D sequences while
incorporating specific style variations. They first familiar-
ized themselves with the original motions through video
playback and practice sessions, then executed each motion
multiple times with different stylistic interpretations. The
capture setup consisted of 12 Vicon cameras operating at
30 fps, positioned strategically around a 6 ⇥ 6 meter cap-
ture volume. Performers wore a standard 53-marker Front-
Waist set for full-body tracking, ensuring accurate capture
of subtle stylistic nuances.

We focused on distinct style categories: proud, old, play-



ful, depressed, and angry, with each performer interpret-
ing these styles based on provided style guidelines. From
180 base motions selected from HumanML3D, we cap-
tured each motion in all five styles, resulting in a dataset
of 900 high-quality motion sequences after post-processing
and cleanup. Each sequence is paired with its original
HumanML3D counterpart and annotated with detailed de-
scriptions of the stylistic differences, creating style transfer
triplets suitable for training and evaluation.

D.3. Fine-Grained Adjustment
We introduce a novel text-to-motion generation approach
for obtaining semantically consistent motion pairs. We cu-
rate 5,000 base instructions spanning common human ac-
tions (walking, running, dancing, sports activities). For
each instruction, we generate the initial motion using
MLD’s standard sampling process [12]. To create variants,
we additionally apply Gaussian noise (� = 0.1) to the la-
tent space, creating 16 slightly different but semantically
consistent variations for each base motion. These variants
maintain the core action while exhibiting subtle differences
in execution style, speed, or range of movement.

The variants are then paired one-to-one, creating 8 pairs
per instruction. Trained annotators carefully examine each
pair and describe the specific modifications needed to trans-
form the original motion into the edited motion. The an-
notations focus on precise, actionable descriptions such as
“bend the knees more deeply,” “perform the arm swing
with greater force,” or “slow down the spinning movement
slightly.” To ensure dataset quality and clarity, we imple-
ment a rigorous filtering process where triplets with unnat-
ural motions (e.g., physically implausible movements) or
unclear editing descriptions are discarded. Additionally, we
maintain a balanced distribution across different motion cat-
egories and editing types to prevent dataset bias.

This systematic approach results in a large-scale dataset

of 16,000 annotated triplets, each consisting of an original
motion, an edited motion, and a clear instruction for the
required modification. The dataset covers a wide range of
fine-grained adjustments, including changes in motion am-
plitude, speed, force, and spatial positioning of body parts.

E. Compositional Applications

As shown in Fig. A3, our method enables both interactive
editing and complex compositional motion generation, ad-
vancing beyond simple motion modifications. This capabil-
ity distinguishes our approach from prior works that address
only specific editing scenarios or isolated modifications.

E.1. Time-Variant Motion Editing
We enable time-variant motion editing through different
text instructions. Users can independently modify distinct
motion segments by applying different instructions to spe-
cific frame ranges. For instance, users can specify “raise
right hand higher” for the first 25 frames, followed by
“lower the right hand” for subsequent frames. This fine-
grained control is implemented by iteratively calling the
auto-regressive model with the first instruction until frame
25, then continuing with the second instruction from frame
25 onward.

E.2. Interactive Motion Modification
Our model supports interactive motion modification by us-
ing previously edited motions as input for subsequent pro-
cesses. Users can build upon earlier edits by feeding the
modified motion back into the model with new instructions.
For example, after raising an arm, users can further ad-
just its position by applying additional modifications to the
edited motion. This sequential editing process enables pro-
gressive refinement until the desired motion is achieved.

Lower both arms

Change upper body 
to playing guitar

Lower body moves 
with rhythm of guitar

Do warm up

Move restlessly

Stand on one leg

Practice Kongfu

(a) Sequential editing

(b) Temporal specific editing

(c) Motion style transfer

Figure A3. Compositional applications performed by our method.



E.3. Compositional Motion Generation
Our model enables compositional motion generation
through time-variant motion editing and interactive motion
modifications. Starting with a base motion, users can layer
multiple actions by applying sequential edits. For instance,
to create a motion of simultaneously drinking water and
reading, users first modify a standing pose with “drink wa-
ter” followed by “reading the book using the other hand”
applied to the resulting motion.

F. Limitations and Future work
While our method demonstrates strong performance across
various editing tasks, it does have several notable limita-
tions that warrant discussion. (i) Our approach shows re-
duced effectiveness when handling complex temporal de-
pendencies in motion sequences, such as sequential actions
(e.g., a number of crouch-stand cycles). (ii) Our model
struggles with instructions that require comprehension of
spatial relationships (e.g., return to the starting point after
forward movement). (iii) While the model performs well on
editing patterns similar to those in the training data, its be-
havior with novel or significantly different editing instruc-
tions remains unexplored.

Future work could focus on: (i) Enhancing the model’s
spatial-temporal understanding to better handle more com-
plex motion sequences and editing instructions (e.g., adopt-
ing motion representations from works that separately con-
sider body parts). (ii) Incorporating physics-based con-
straints to ensure physical plausibility in extreme editing
cases.



“Express emotional 
bleakness”

“Wave like an old 
person”

“Show pride”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A4. Comparison with baselines and ablations on style transfer.



“Act more tired”

“Be more lively while 
playing violin”

“Move with anger”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A5. Comparison with baselines and ablations on style transfer.



“Angrily raise hands 
in protest”

“Stand proudly”

“Act more cheerfully”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A6. Comparison with baselines and ablations on style transfer.



“Raise both hands 
while looking sad”

“Hunch over like an 
old person”

“Move more 
energetically”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A7. Comparison with baselines and ablations on style transfer.



“The lower body walks 
forward”

“The lower body 
performs squats”

“The lower body is 
balanced on one leg 
while the other swings”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A8. Comparison with baselines and ablations on body part replacement.



“Walk normally with a 
straight back”

“The upper body 
extends and swings”

“The lower body 
moves in a circular 
pattern, alternating 
directions”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A9. Comparison with baselines and ablations on body part replacement.



“The person swings 
both arms in large 
circles”

“The lower body 
moves sideways to 
the left”

“The upper body 
stretches”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A10. Comparison with baselines and ablations on body part replacement.



“The person playing 
the violin while 
climbing stairs”

“The upper body is 
engaged in boxing 
movements”

“The person bends 
and interact with a 
dog”

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Ours

TMEDMDM

Ours w/o MCM

Original motion

Figure A11. Comparison with baselines and ablations on body part replacement.



“Lift the other leg and 
kick out”

“Perform a sudden 
jump”

“Swing a single arm”

“Run to the other side”

“Wave the other arm”

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

Figure A12. Comparison with ablations on fine-grained adjustment.



“Lower both arms”

“Stand still”

“Walk in place”

“The body jumps 
twice”

“The arm stretches 
out straighter”

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

Figure A13. Comparison with ablations on fine-grained adjustment.



“Move with larger 
movements”

“Raise your hands 
higher”

“Lower your arm 
slightly”

“Crossing legs”

“Stand up”

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

OursOurs w/o MCMOriginal motion

Figure A14. Comparison with ablations on fine-grained adjustment.
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