

Introduction

We propose to leverage scene affordance as an intermediate representation to facilitate language-guided human motion generation in 3D scenes.

Challenges:

The inherent complexity of marrying 3D scene grounding and conditional motion generation

Impede the model's ability to generalize to novel scenarios.

> The generative models' dependency on large volumes of highquality paired data

Lack large-scale, motion-diverse, and semantic-rich HSI.

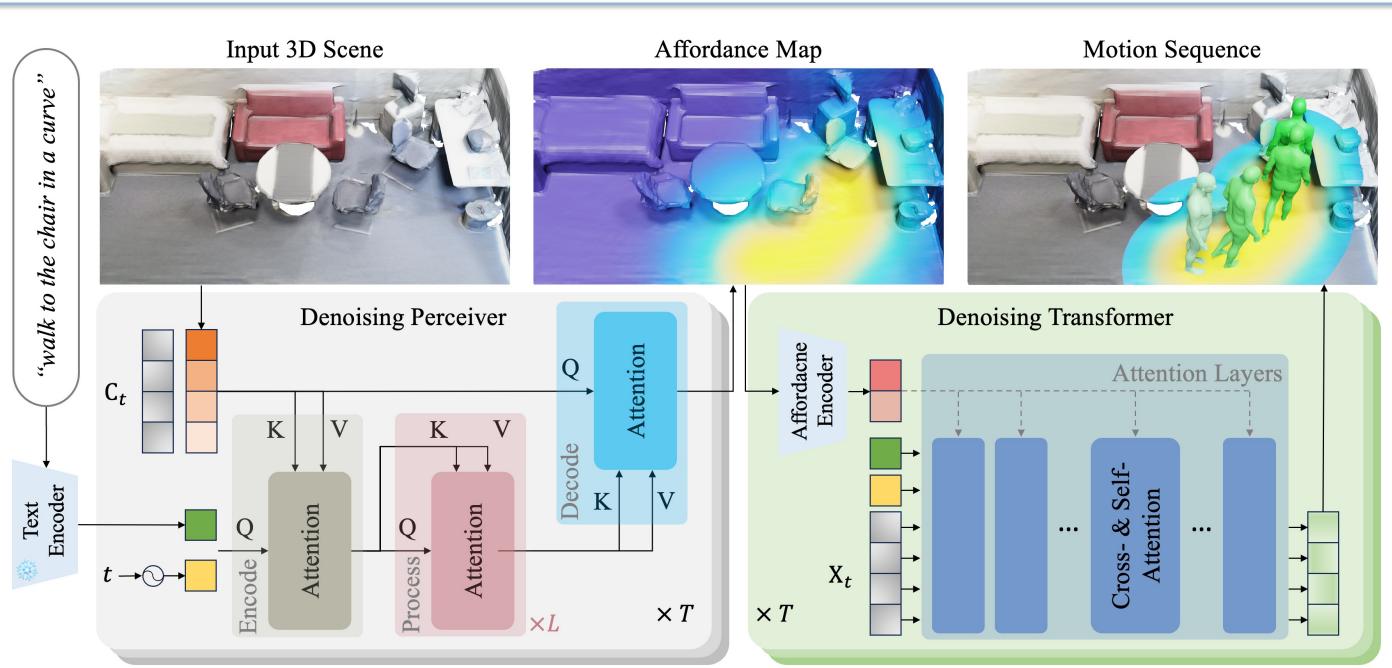
Contributions

- > We introduce a novel two-stage model that *incorporates scene* affordance as an intermediate representation, facilitating languageguided human motion synthesis in 3D environments.
- > We demonstrate our method's superiority over existing motion generation models on HumanML3D and HUMANISE benchmarks.
- > Our model showcases remarkable generalization capabilities, performing impressively in generating human motions within **unseen** scenarios.

Move as You Say, Interact as You Can: Language-guided Human Motion Generation with Scene Affordance

Zan Wang^{1,2}, Yixin Chen², Baoxiong Jia², Puhao Li^{2,3}, Jinlu Zhang^{2,4}, Jingze Zhang^{2,3}, Tengyu Liu², Yixin Zhu⁵, Wei Liang^{1,6}, Siyuan Huang²

¹Beijing Institute of Technology ²State Key Laboratory of General Artificial Intelligence, BIGAI ³Tsinghua University ⁴CFCS, School of Computer Science, Peking University ⁵Institute for AI, Peking University ⁶Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing


Method

Affordance Map

> We derive the scene affordance map from the distance field between scene points and human skeleton joints

$$\mathbf{c}(n,j) = \exp\left(-\frac{1}{2}\frac{\mathbf{d}(n,j)}{\sigma^2}\right) \mathbf{C} =$$

- Enhance the 3D grounding
- Provide a nuanced understanding of the geometric

Affordance Diffusion Model (ADM)

Results

Results on HumanML3D [Guo et al., CVPR 2022]

Quantative Results

Model	R-Precision ↑Top 1Top 2Top 3			- FID↓	MultiModal Dist.↓	\downarrow Diversity \rightarrow	MultiModality †
Real	-	1	-	$0.002^{\pm.000}$	$2.974^{\pm.008}$	$9.503^{\pm.065}$	-
	$\begin{array}{c} 0.246^{\pm.002}\\ \textbf{0.457}^{\pm.002}\\ 0.319^{\pm.005}\\ 0.341^{\pm.010}\end{array}$	$\begin{array}{c} 0.639^{\pm.003} \\ 0.498^{\pm.004} \end{array}$	$\begin{array}{c} 0.740^{\pm.003} \\ 0.611^{\pm.007} \end{array}$		$\frac{3.340^{\pm.008}}{5.566^{\pm.027}}$	$\begin{array}{c} 7.676^{\pm.058} \\ 9.188^{\pm.002} \\ 9.559^{\pm.086} \\ 9.772^{\pm.117} \end{array}$	
	$\begin{array}{c} 0.418^{\pm.005}\\ 0.432^{\pm.007}\end{array}$		$\begin{array}{c} 0.707^{\pm.004} \\ 0.733^{\pm.006} \end{array}$	$\begin{array}{c} 0.489^{\pm.025}\\ 0.352^{\pm.109}\end{array}$		$9.449^{\pm.066} \\ 9.825^{\pm.159}$	

 $= \max - pool(\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_F)$

Affordance-to-Motion Diffusion Model (AMDM)

Qualitative Results

nan squats deeply three times while raising both arms in the air as if holding a dumbell

The person walks in a clockwise circle

Quantative Results

Model	goal dist.↓	APD↑	contact↑	non-collision [↑]	quality score [↑]	action score↑
E J		$\begin{array}{c} 4.094^{\pm.013}\\ 5.510^{\pm.019}\\ 4.063^{\pm.020}\end{array}$	$\begin{array}{c} 84.06^{\pm.716} \\ 76.11^{\pm.684} \\ 86.43^{\pm.845} \end{array}$	$\begin{array}{c} {\bf 99.77^{\pm.004}}\\ {99.71^{\pm.014}}\\ {99.76^{\pm.006}}\end{array}$	$2.25 \pm 1.26 \\ 2.60 \pm 1.24 \\ 3.09 \pm 1.34$	3.66 ± 1.38 3.88 ± 1.32 4.18 ± 1.16
				$\begin{array}{c} 99.69^{\pm.007} \\ 99.70^{\pm.005} \end{array}$	3.46 ± 1.15 3.55 ± 1.19	${\bf 4.47 \pm 0.84} \\ {\rm 4.44 \pm 0.85}$

Qualitative Results

"Lie down on the bed"

Results on Novel Evaluation Set

"A person wanders in the room around the table."

https://afford-motion.github.io/

Project Page

The person is walking forward and then back the other direction

A person jumps from side to side right to left

A person jogs forward and semi circles aroun the left and then to the right

A person waves with his left hand

Results on HUMANISE [Wang et al., NeurIPS 2022]

"sit on the chair"

"stand up from the toilet"

"walk to the desk"

"A man dances on the bed happily.

M Please refer to our project page for the animation videos and more results.