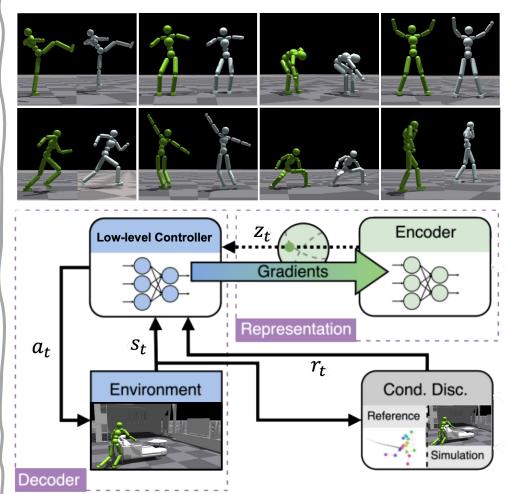


AnySkill: Learning Open-Vocabulary Physical Skill

for Interactive Agents

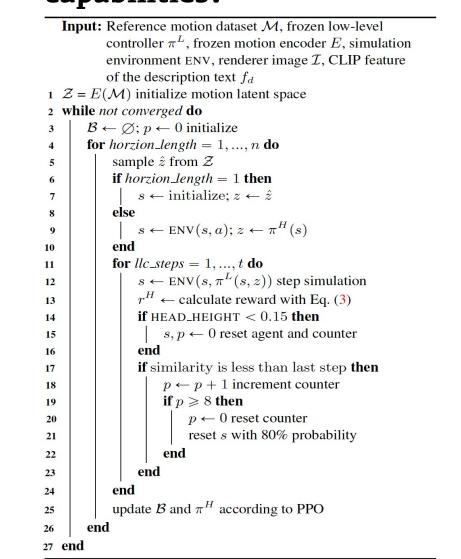
Jieming Cui^{1,2,*}, Tengyu Liu^{2,*}, Nian Liu², Yaodong Yang¹, Yixin Zhu^{1,2,⊠}, Siyuan Huang^{2,⊠}

¹ Institute for Artificial Intelligence, Peking University, ² State Key Laboratory of General Artificial Intelligence, BIGAI



https://anyskill.github.io/

Low-level Algorithm


- **93** modified reference motions
- Semantic latent space

- $\mathcal{L}_{\mathcal{D}} = -\mathbb{E}_{M \in \mathcal{M}} \Big(\mathbb{E}_{d^{\pi}(s, s'|z)} \left[\log \left(1 \mathcal{D}(s, s'|z) \right) \right]$
- + $\mathbb{E}_{d^{M}(s,s')} \left[\log \mathcal{D}(s,s'|z) + \log \left(1 \mathcal{D}(s,s'|z' \sim \mathcal{Z}) \right) \right]$
- $+ w_{\text{gp}} \mathbb{E}_{d\mathcal{M}(s,s')} \left[||\nabla_{\theta} \mathcal{D}(\theta)|_{\theta = (s,s'|\hat{z})}||^2 \right] \left| \hat{z} = \text{sg}(E(M)) \right]$
- $r^{L}(s, s', z) = -\log\left(1 \mathcal{D}\left(s, s'|z\right)\right)$

High-level Algorithm

- **Only** image-based reward
- **Agent-centered** image rendering
- **LLM** enhances open-vocabulary capabilities.

ANY Text Description

a. Sit down

b. Dance

- c. Kick
- d. Jump rope

Iterate text enhancement

- Describe one specific human pose.
- 2. Ensure the verb and noun relate to a human
- . Make the description fluent, concise, and unambiguous. ...

- a. Sit down, bent torso, legs folded at knees
- b. Dance, left foot step backward, right hand extends
- c. Kick, left leg forward, right leg retreats

Model w/o manual reward

Open-vocabulary descriptions

Text Transformer

CLIP Similarity

Image Encoder (VIT)

real-time

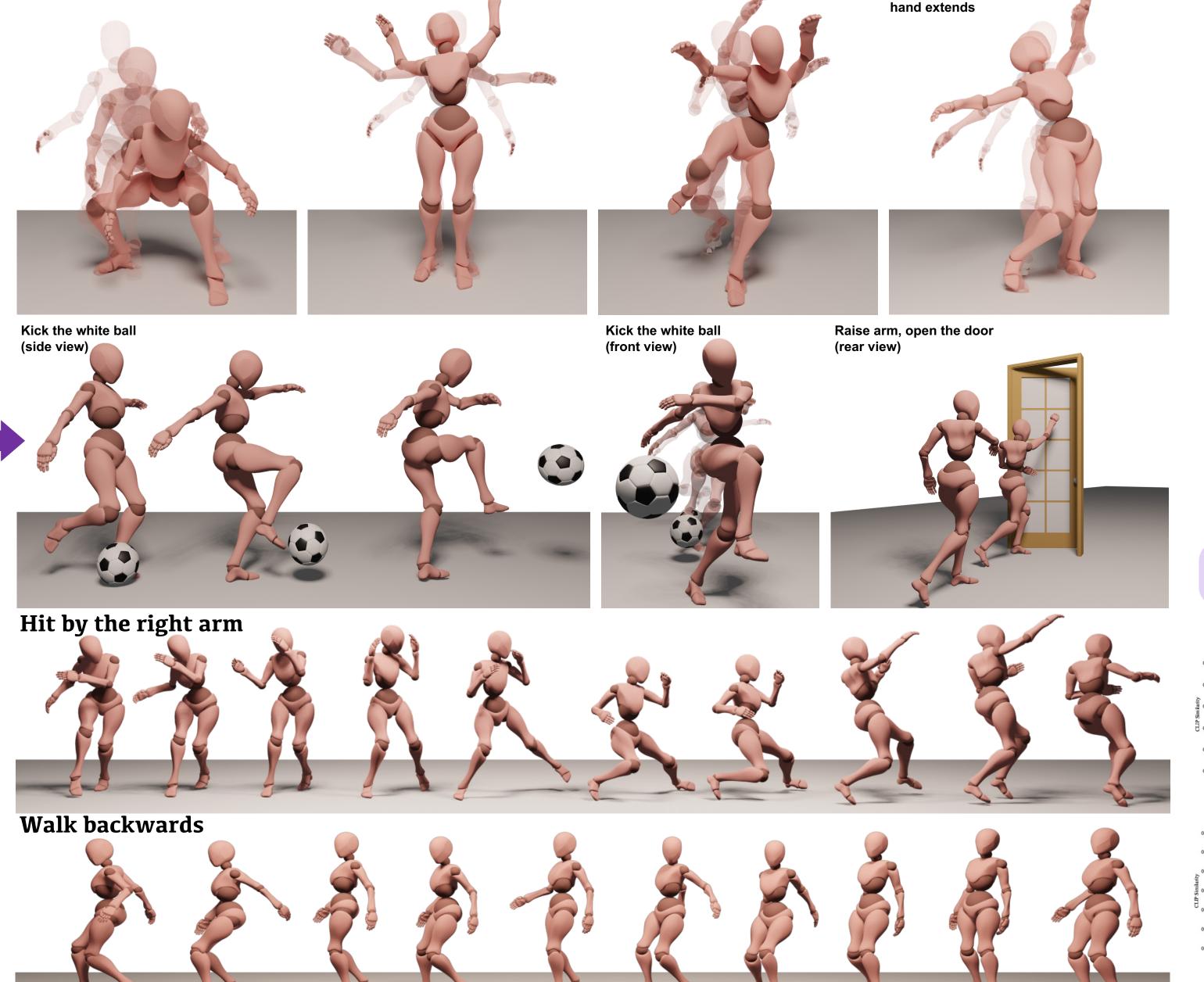
d. Jump rope, legs off the ground, wave hands

Unlabeled motions

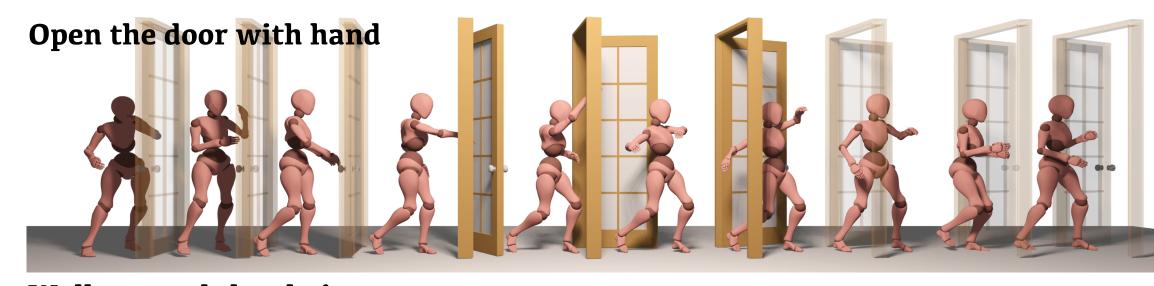
Motion Encoder

Low-level Controller

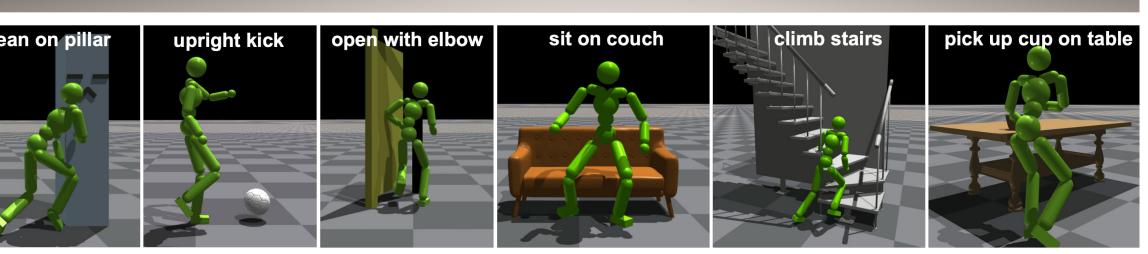
High-level Policy

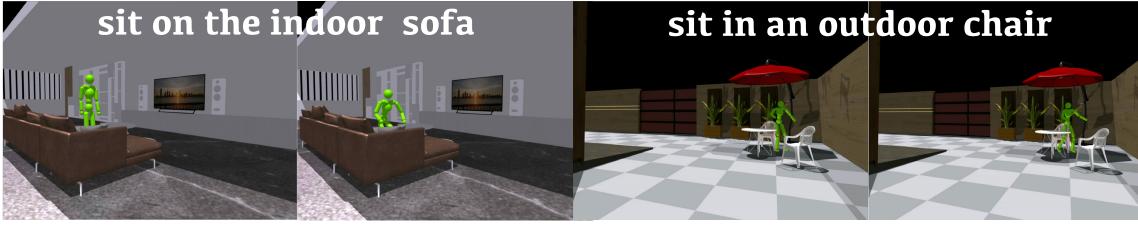

Low-level Controller

Environment

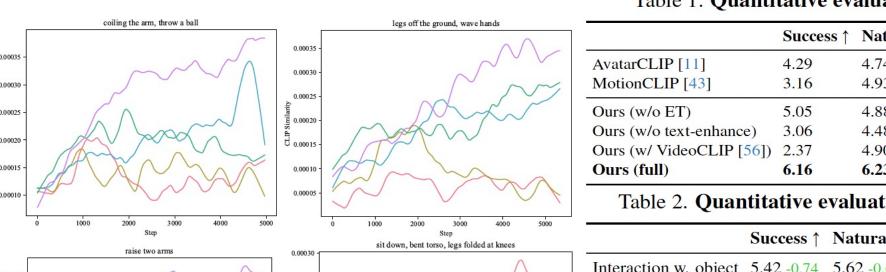

Reward calculation

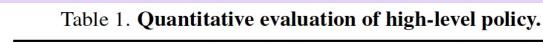
Contributions


- ✓ AnySkill is a hierarchical approach designed for learning open-vocabulary physical skills.
- We create flexible, generalizable, image-based rewards, eliminating the need for manual design.
- Our method outperforms existing approaches and enables agents to interact smoothly with dynamic objects in various contexts.



Interaction with object & scene




Quantitative Results

--- VLM-RMs --- CLIP-S --- AvgPool --- vel.rew.

	Table 2. Quantitative evaluation of intera				
4000 5000 knees		Success ↑	Natural ↑	Smooth [↑]	
	Interaction w. object Interaction w. scene				
	Table 3.	Compa	risons of	the rewa	
W-V	S	uccess†	Natural↑	Smooth [↑]	

	Success↑	Natural↑	Smooth [↑]	Physics ↑	CLIP_
VLM-RMs [37]	3.15	4.36	5.35	5.17	19.46
CLIP-S [69]	3.80	5.41	5.98	6.21	19.78
AvgPool [56]	5.09	5.96	6.55	6.70	20.25
+ vel. rew. [32]	2.73	4.42	5.35	5.22	18.39
Ours	6.16	6.23	6.51	6.93	24.18

		Success ↑	Natural ↑	Smooth [↑]	Physics ↑	CLIP_S
	AvatarCLIP [11]	4.29	4.74	5.79	5.74	21.11
5-1	MotionCLIP [43]	3.16	4.93	5.72	5.83	21.16
	Ours (w/o ET)	5.05	4.88	5.68	5.31	21.89
	Ours (w/o text-enhance)	3.06	4.48	5.19	5.96	20.76
	Ours (w/ VideoCLIP [56])	2.37	4.90	5.65	6.41	21.35
20	Ours (full)	6.16	6.23	6.51	6.93	24.18
						•

Table 2.	Quantitative	evaluation	of interac	tion mo	otions.

Physics↑ CLIP_S↑

5.45 -1.48 24.49 +0.35

5.41 -1.52 22.41 -1.73

Table 3. Comparisons of the reward design.						
	Success↑	Natural↑	Smooth [↑]	Physics ↑	CLIP	
'LM-RMs [37]	3.15	4.36	5.35	5.17	19.46	
CLIP-S [69]	3.80	5.41	5.98	6.21	19.78	
vgPool [56]	5.09	5.96	6.55	6.70	20.25	
vel. rew. [32]	2.73	4.42	5.35	5.22	18.39	