A Preliminaries

A.1 Formulation

We formulate the humanoid teloperation as a Markov Decision Process (MDP) M = {S, A, T, R}.
S includes proprioceptive states s and task-oriented observations 0****. The action space A € R?’
represents the humanoid’s joint angles in our method. 7 is the transition function conditioned on &
and A. The reward functions R is defined based on S,.A. A policy = is proposed to maximize the
overall reward R using the Proximal Policy Optimization (PPO) algorithm.

A.2 LiDAR Odometry and Closed-Loop Error Correction

LiDAR odometry is designed to accurately determine the robot’s state, including its orientation and
position. In this paper, we adopt FAST-LIO2 [27], which utilizes onboard LiDAR and IMU to
estimate the humanoid’s global position. FAST-LIO2 [27] leverages IMU data and LiDAR point
clouds to construct and update a 3D map in real time. It then registers the current LiDAR point
clouds with the map to estimate the robot’s current position.

Previous teleoperation systems [18, 22, 23] often operate in an open-loop manner, primarily due to
the absence of the humanoid’s global position. Consequently, stepwise tracking errors accumulate
over time, leading to significant drift during long-horizon tasks. In this work, we leverage LiDAR
odometry to determine the robot’s global position. Similarly, we obtain the operator’s global position
with the odometry from Apple Vision Pro. We integrate the difference between the two positions into
the task observation 0t®**, and design a reward function for our teleoperation policy that minimizes
this difference. Notably, the LiDAR operates at 10 Hz, and our policy runs at 50 Hz. Our policy
uses the latest available odometry position at each timestep.

B Reward Functions and Domain Randomization

Tab. Al provides a detailed overview of the reward structure utilized in this study, while Tab. A2
outlines the domain randomization scheme employed.

C Implement Details

C.1 Data Augmentation

In our implementation, we filter out physically infeasible AMASS data and select motions with
large upper- and lower-body workspaces as oracle motions. These motions are further modified by
concatenating body parts or accelerating sequences.

C.2 Model Architecture

The student policy is composed of L = 3 MoE layers, each containing N = 4 experts, where
each expert is implemented as an MLP with dimensions (2048, 512, 512, 256). The policy uses a
history length of H = 25 frames and activates the top k = 2 experts based on the highest weights
determined by the router. The AMP discriminator is a 3-layer MLP (256, 256, 256) that is updated
online during training on CLONED. For comparison, the baseline model CLONE T uses a single
MLP with architecture (2048, 1024, 512, 512).

C.3 Policy Training

We train our policy in IsaacGym using a single A800 GPU. The teacher policy is trained for 1M
iterations with 8192 parallel environments, while the student policy is trained for 600K iterations
with 4096 parallel environments. Training the teacher policy requires ~ 480K simulation steps
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Table Al: Reward functions. The details of the primary reward function used in our training process.

Term Expression Weight
Torque 7113 —0.0001
Torque limits [T & [Tmin, Tmax)]1 -2
DoF position limits [Pt ¢ [Pmin, Pmax]]1 -625
DoF velocity limits [Pt € [Pmins Pmax]]1 -50
Termination termination; —et
DoF acceleration G 13 —1.1e7°?
DoF velocity llas 13 —0.004
Lower-body action rate [lalver — alover||3 -1.0
Upper-body actionrate  ||a}™" — a}*P{"||3 -0.3
Feet air time T — 0.3 2500
Stumble [(szfgl2 >5x Fi)i  —1.25¢*
Slippage HvteetHQ : [(Ffeet > —80
Feet orientation [RE| —62.5
In the air (Pl Flt <Dl =750
Orientation [RZ| —50
DoF position exp(—0.25||p — p|l2) 100
DoF velocity exp(—O.QSHf) - PH%) 10
Extend body position  exp(—0.5(|§ — q[|3) 250
Body position (MR) ~exp(—0.5||qu — @ul|[3) 150
Body rotation exp (70.1||0 €] éH) 400
Body velocity exp(—10.0||v — ¥||2) 80
Body angular velocity exp(—0.01|jw — @||2) 8
Body hand rotation (Ohana — Onana)® 500
AMP Sec.3.3 500

Table A2: Domain Randomization. The details of the primary domain randomization used in our training
process.

Term Value
Friction U(0.6,2.0)
Base CoM offset U(—0.04,0.04)m
Link mass U(0.7,1.25) x default kg
P Gain 2(0.85, 1.15) x default
D Gain 4(0.85,1.15) x default
Torque RFI 0.05 x torque limit N - m
Control delay 4(0.0,20)ms
Global step delay 4(0.0,80)ms
Rand born distance 4(0.0,2.0)m

U(—20.0,20.0)degree
interval = 5s, vy = 1.5m/s
flat, rough, low obstacles [18]

Rand heading degree
Push robot
Terrain type

(~ 20K PPO steps) and ~ 24 hours on a single A800 GPU. The student policy requires ~ 48 hours
on a single 3090 Ti.

D Experiments

D.1 Evaluation Metrics

We evaluated CLONE on motion tracking tasks from CLONED using five metrics: success rate SR
(%), mean per-keybody position error (MPKPE) Eypxpe (mm), root-relative mean per-keybody posi-
tion error (R-MPKPE) E._npkpe (mm), average joint velocity error Eye (mm/s), and hand orientation
tracking error Eh.hq. Success rate (SR) represents the proportion of episodes where: (i) the robot
maintains balance without falling, and (ii) the average per-keybody distance between the robot and
reference motion remains below 1.5m across the three controlled joints. We defined the hand orien-
tation tracking error as Fp,g = 1 — (g, q>2, where  and q represent the reference and robot hand

quaternions.
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Figure Al: Qualitative Results of CLONE and CLONE *. (a) and (b) show the “crouch” tracking results of
CLONE ", while (c) and (d) present the results of CLONE.

D.2 Ablation Study

We investigated the impact of key design choices, Table A3: Ablation study on history length and archi-
specifically history length and MoE parameters, tecture components.

through systematic ablation experiments reported  Method Emppe  Frappe Bt Ehandrot
in Tab. A3. Our results indicate that a configura- () History Length Analysis

tion using 25 timesteps of history, three MoE lay- History 93.97 3199  236.12  3.80
ers, and four experts per layer yields optimal per-  History50 135.60 41.33  286.66 12.23
formance across most evaluation metrics. We ob- ~ isoy23(CLONE) 8784 33.30  227.17 361
served that shorter history lengths and increased () Architecture Ablation

expert counts can produce marginally lower R- g;gz; 83\[ = 18)) 1;34226 3;)-95(? ;Z?-ié Z-;;
MPKPE values and larger global tracking errors,  crone 8784 3330 22717 361
suggesting a trade-off between local and global
motion fidelity.

D.3 Qualitative Results Comparsion

We analyze the qualitative results of CLONE and CLONE "~ in Fig. Al. Subfigures (a) and (b) show
that CLONE *, trained on OmniH20 [18], fails to track motions like “crouch” or “squat to pick up
an object” and falls down. In contrast, subfigures (c) and (d) present the results of CLONE, which
tracks these motions accurately and robustly. Although CLONE " is trained on a larger dataset (more
than 8% motions, compared to CLONED’s 345 motions), it struggles with these tasks. Meanwhile,
our model effectively tracks these motions and performs manipulation skills using only about 20%
of the data. Since the OmniH2O [18] dataset also includes motions like “squat,” this result suggests
that a smaller dataset can still yield excellent tracking performance, as large-scale training data may
cause the policy to overly generalize and compromise certain skills.

Expert Activation Analysis To better understand the specialization within our mixture-of-experts
architecture, we visualized expert activation weights across nine distinct motion types in Fig. A2.
Results reveal clear specialization patterns where motions requiring similar skills activate specific
experts. In the first layer, experts 1 and 2 are predominantly activated during standing motions, while
experts 3 and 4 show stronger activation during squatting motions. Notably, all four experts in the
first layer become activated during dynamic motions such as jumping and punching, suggesting col-
laborative processing of complex movements. Similar specialization patterns emerged in subsequent
layers, albeit with reduced variance across different motion categories.
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Figure A2: The activation status of each expert.
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Figure A3: Experts activation when N = 8
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Figure A4: Experts activation when L = 4

D.4 The Choice of the Number of MoE Layers and Number of Experts

We visualize the activation patterns of experts in Fig. A2 to A6. Fig. A3 shows that MoE layers with
N = 8 experts activate only half of the experts in each layer, revealing that 8 experts are redundant
for the current training data distribution, while 4 experts are sufficient. Fig. A6 demonstrates that
CLONE “(L = 1), which uses only one MoE layer, is still capable of activating different experts.
However, as shown in Tab. A3, its tracking performance is inferior to that of CLONE. This is
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Figure A5: Experts activation when L = 5
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Figure A6: Experts activation when L = 1

primarily attributed to the model’s parameters being too limited to effectively learn such diverse
motions. Though 4 MoE layers and 5 MoE layers also has same activation patterns, like shown in
Fig. A4 and A5, we choose 3 MoE layers for a balance of training cost and policy performance.
Therefore, we select the MoE policy with three MoE layers and four experts as our final model.
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