X-VoE: Measuring eXplanatory Violation of Expectation in Physical Events Bo Dai^{1,2}, Linge Wang³, Baoxiong Jia², Zeyu Zhang², Song-Chun Zhu^{1,2,3}, Chi Zhang^{2, \boxtimes}, Yixin Zhu^{4, \boxtimes} ¹ School of Intelligence Science and Technology, Peking University ² Beijing Institute for General Artificial Intelligence https://yzhu.io/publication/intuitive2023icc

Motivation **Explanatory Violation of Expectation**

			Surprise				
		Origin video	w-o explain		w- explain	Explaining result	
	predictive (S1)		0	=	0		
			Į	-	Į		
	hypothetical (S2)		Į	ŧ	0		
			0	=	0		
	explicative (S3)		Į	ŧ	0		
			0	ŧ	Į		

- Even as infants, humans are capable of adapting to all three settings effortlessly.
- Existing works typically prioritize prediction without explanation and only work for specific settings.
- X-VoE as a new standard designed to emphasize predictive and interpretive capabilities.

Achievement **Visualization of Three Settings**

³ Department of Automation, Tsinghua University ⁴ Institute for Artificial Intelligence, Peking University

physical violations.

judgments about

We propose XPL inspired by developmental psychology theories.

- Perception module encodes objects in picture information into vectors using a Component Variational Autoencoder.
- Reasoning module uses transformer to reason about partially occluded objects, avoiding inaccurate information on the physical dynamics model. • The dynamics module uses the reasoned object information to train a
- predictive model via a self-supervised approach.
- We visualize explanation results by decoding it and removing the occluding baffle for better visibility.

Our research is focused on two key aspects:

- First, we reason about possible representations of occluded objects based on intuitive physics.
- Second, we complete VoE judgments based on the reasoned object representations.

Explanation **Visualization for Training Dataset**

In order to train dynamic modules to learn intuitive physics, it is crucial to consider the presence of occluded objects. The lack of information about these objects can negatively impact the accuracy of the dynamic module in learning intuitive physics.

- The PLATO method, which is used to learn intuitive physics, relies on incorrect information about the representation of occluded objects.
- of occluded objects, which is obtained through a reasoning process.

Method **Learning Process of XPL**

• The XPL method uses more accurate information about the representation

Our X-VoE dataset has four scenarios: ball collision, ball blocking, object permanence, and object continuity, based on three setup modes.

Our model's accuracy is based on comparing scores of two videos using surprise scores to identify compliance and violations of intuitive physics laws. We use two metrics, holistic and comparative, to validate our model from different perspectives. Holistic metric compares compliant and non-compliant videos in different scenarios. An ideal score is 100%. Our model performs well in the first three scenarios and not

- too bad in the last one.
- need explanatory capabilities for reasoning.

Experiment Four Scenarios of Testing Dataset

• Predictive setting has a compliant process in black and an unphysical process in red. • Hypothetical setting has two physically consistent processes in black.

• Explicative setting also has a compliant process and an unphysical process.

Two Metrics for Testing Dataset

Results

Comparative metric shows that Simple AI predicts simple tasks, but complex tasks