
Supplementary Material for
RAVEN: A Dataset for Relational and Analogical Visual rEasoNing

Chi Zhang?,1,2 Feng Gao?,1,2 Baoxiong Jia1 Yixin Zhu1,2 Song-Chun Zhu1,2

1 UCLA Center for Vision, Cognition, Learning and Autonomy
2 International Center for AI and Robot Autonomy (CARA)

{chi.zhang,f.gao,baoxiongjia,yixin.zhu}@ucla.edu, sczhu@stat.ucla.edu

1. Grammar Productions
We use an Attributed Stochastic Image Grammar

(A-SIG) to represent the structured image space. The gram-
mar is decomposed into 5 levels, each of which could have
possibly multiple symbols. All production rules are summa-
rized in Table 1.

Table 1. Grammar production rules used in RAVEN. Note that the
production rules in each level produce symbols in the next level.
Here, · denotes the and relation in the grammar, ∅ denotes the
null symbol, and “Entity” is an instantiated object on the canvas.
We use ∗ to denote the shared production rules for every symbol
in a given level.

Level Production Rules
Scene Scene→ Singleton

Scene→ Left-Right
Scene→ Up-Down
Scene→ Out-In

Structure Singleton→ Grid
Left-Right→ Left · Right
Up-Down→ Up · Down
Out-In→ Out · In

Component Grid→ Center
Grid→ 2×2Grid
Grid→ 3×3Grid
Left→ Center
Right→ Center
Up→ Center
Down→ Center
Out→ Center
In→ Center
In→ 2×2Grid

Layout Layout∗→ Entity · Layout∗

Layout∗→ ∅
Entity Entity→ Entity

? indicates equal contribution.

Note that excluding Entity, we could derive 7 differ-
ent sentences, i.e., figure configurations, from the grammar.
Semantics of symbols are explained below.

• Scene

- Scene: This is the starting symbol of the gram-
mar and represents the entire scene. This symbol
shares the same name as the level.

• Structure

- Singleton: This symbol treats the scene as a
whole and does not divide it into independent
components.

- Left-Right: The structure divides the scene
evenly into a left part and a right part. Two parts
are separated by a vertical line.

- Up-Down: The scene is decomposed evenly into
an upper part and a lower part. Two parts are sep-
arated by a horizontal line.

- Out-In: An outer part and an inner part com-
pose the scene. Two parts do not have any over-
laps.

• Component

- Grid: The only component in Singleton. In
this component, all objects are subject to the
same set of rules.

- Left: The left part of the Left-Right. Ob-
jects in this component lie in the left area.

- Right: The right part of the Left-Right. Ob-
jects in this component lie in the right area.

- Up: The upper part of Up-Down. Objects are
grouped in the upper area of the figure.

- Down: The lower part of Up-Down. Objects are
grouped in the lower area of the figure.

1



- Out: The outer part of Out-In. Objects are
clustered in the outer area of the figure.

- In: The inner part of Out-In. Objects are clus-
tered in the inner area of the figure.

• Layout

- Center: There is a single object centered in the
area occupied by the component.

- 2×2Grid: A maximum number of 4 objects dis-
tributed in a 2× 2 grid.

- 3×3Grid: A maximum number of 9 objects dis-
tributed in a 3× 3 grid.

• Entity

- Entity: A grammatical symbol that would in-
stantiate an object on the canvas.

Another important construct in A-SIG is the attribute.
We only have attributes in Layout and Entity, summa-
rized in Table 2. Note that all the symbols in the same level
have the same set of attributes.

Table 2. Attributes in different levels of the grammar.
Level Attributes
Layout Number, Position, Uniformity
Entity Type, Size, Color, Orientation

In Table 2, Uniformity and Orientation are noise
attributes and are not governed by rules. We now explain
semantics of each attribute and the values they could take.

• Layout

- Number: The number of entities in a given lay-
out. It could take integer values from [1, 9].

- Position: Possible slots for each object in the
layout. Each Entity could occupy one slot.
Different layouts have different slots.

- Uniformity: This attribute could be True
or False. When False, objects are not con-
strained to look alike.

• Entity

- Type: Entity types could be triangle, square,
pentagon, hexagon, and circle.

- Size: 6 scaling factors uniformly distributed in
[0.4, 0.9].

- Color: 10 grey-scale colors for entities, uni-
formly distributed in [0, 255].

- Orientation: 8 self-rotation angles uni-
formly distributed in [0, 2π].

2. Rules in RAVEN
In total, we have 4 rules that operate on 5 rule-governing

attributes: Constant, Progression, Arithmetic,
and Distribute Three. By introducing internal pa-
rameters, we design 8 different rule instantiations.

• Constant: Attributes governed by this rule would
not change in the row. If it is applied on Number or
Position, attribute values would not change across
the three panels. If it is applied on Entity level at-
tributes, then we leave “as is” the attribute in each ob-
ject across the three panels. This design would ren-
der every object the same if Uniformity is set to
True; otherwise, it will introduce noise in a problem
instance.

• Progression: Attribute values monotonically in-
crease or decrease in a row. The increment or decre-
ment could be either 1 or 2, resulting in 4 instances in
this rule.

• Arithmetic: There are 2 instantiations in this rule,
resulting in either a rule of summation or one of sub-
traction. Arithmetic derives the value of the at-
tribute in the third panel from the first 2 panels. For
Position, this rule is implemented as set arith-
metics.

• Distribute Three: This rule first samples 3 val-
ues of an attribute in a problem instance and permutes
the values in different rows.

Among all attributes, we realize that Number and
Position are strongly coupled, hence we do not al-

Table 3. Network architecture used in CNN(+DRT).
Operator Params
Convolution 3-2-32
BatchNorm 32
ReLU
Convolution 3-2-32
BatchNorm 32
ReLU
Convolution 3-2-32
BatchNorm 32
ReLU
Convolution 3-2-32
BatchNorm 32
ReLU
(DRT) 512-300
Linear 512
ReLU
Dropout 0.5
Linear 8



Table 4. Network architecture used in LSTM(+DRT).
Operator Params
Convolution 3-2-16
BatchNorm 16
ReLU
Convolution 3-2-16
BatchNorm 16
ReLU
Convolution 3-2-16
BatchNorm 16
ReLU
Convolution 3-2-16
BatchNorm 16
ReLU
(DRT) 256-300
LSTM 96
Linear 8

Table 5. Network architecture used in WReN(+DRT).
Operator Params
Convolution 3-2-64
BatchNorm 64
ReLU
Convolution 3-2-64
BatchNorm 64
ReLU
Convolution 3-2-64
BatchNorm 64
ReLU
Convolution 3-2-64
BatchNorm 64
ReLU
Relational Module 512-512-512-256
(DRT) 256-300
Linear 256
ReLU
Linear 256
ReLU
Dropout 0.5
Linear 1

low non-Constant rules to co-occur on both of the at-
tributes. With 4 rules and 5 attributes, we could have
had 20 rule-attribute combinations. However, we exclude
Arithmetic on Type, as it is counterintuitive, resulting
in 19 combinations in total.

3. Model Details

In this section, we provide details for all models we use
to benchmark RAVEN. We use X-Y-Z to denote the param-
eters of convolutional layers, where X refers to the kernel
size, Y the stride, and Z the number of channels. The pro-

Table 6. Network architecture used in ResNet(+DRT).
Operator Params
ResNet-18 Backbone
(DRT) 512-300
Linear 512
ReLU
Dropout 0.5
Linear 8

posed Dynamic Residual Tree (DRT) module’s parameters
are denoted A-B, where A refers to the size of image fea-
tures and B the length of word embeddings. The relational
module is denoted using sizes of the 4 linear layers in it (see
the original paper for details). The model architectures are
shown in Table 3, 4, 5, and 6.

4. Examples
In the following, we provide more examples in RAVEN.

Each example contains a problem matrix, an answer set, a
serialized tree structure (excluding Entity) for the prob-
lem, and a rule set. Note that the tree is serialized using
a pre-order traversal with / denoting the end-of-branch.
As mentioned in Section 2, Number and Position are
tightly coupled. Therefore, when a non-Constant rule ap-
plies on one attribute and modifies another, we use NA to
denote the rule of another attribute. Note that image sizes
in the answer set are identical to the ones in the problem
matrix for model training, validation, and testing.



Solution (from left to right, up to down): 5, 3, 2, 4, 1, 3.



Solution (from left to right, up to down): 2, 8, 6, 3, 6, 2.



Solution (from left to right, up to down): 3, 6, 8, 7, 6, 4.



Solution (from left to right, up to down): 5, 6, 5, 6, 5, 6.



Solution (from left to right, up to down): 3, 1, 6, 4, 7, 1.



Solution (from left to right, up to down): 6, 1, 2, 1, 4, 6.



Solution (from left to right, up to down): 1, 5, 6, 2, 3, 4.


