MetaStyle: Three-Way Trade-Off Among Speed, Flexibility and Quality in Neural Style Transfer

Chi Zhang, Yixin Zhu, Song-Chun Zhu International Center for AI and Robot Autonomy

{chizhang, yzhu, sczhu}@cara.ai

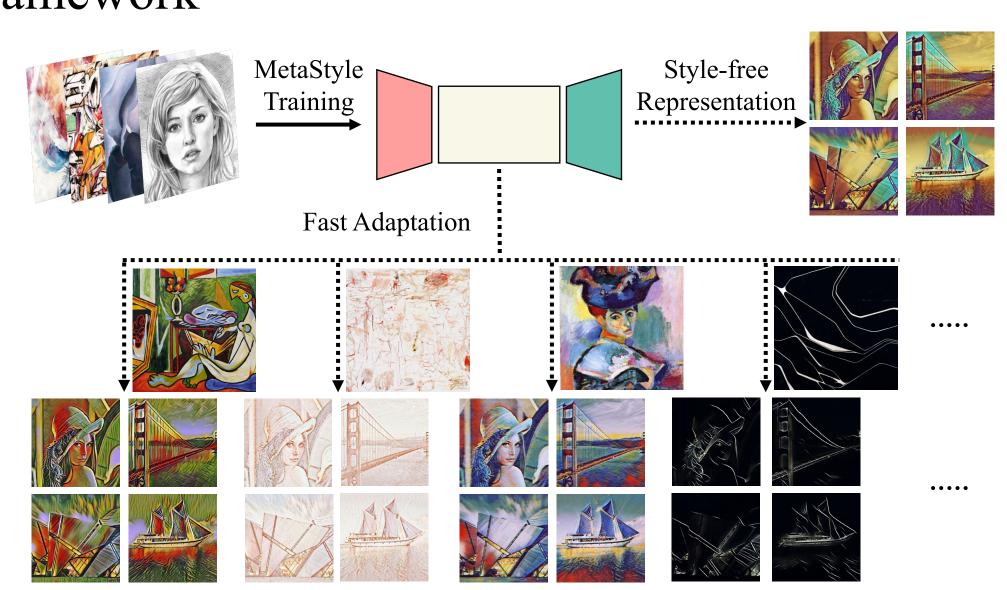
Motivation

Method	Speed	Flexibility	Quality	Drawback	
Optimization-based	Slow	Any	High	Run for each content-style pair	
Fast approximation	Fast	Single	High	Train long for each new style	
Feature matching	Fast	Any/Several	Compromised	Limited set of styles, low quality	

Can we find a style transfer algorithm that could quickly adapt to any style, while the adapted model maintains high efficiency and good image quality?

MetaStyle

Framework



Training

 $\mathbb{E}_{c,s}[\ell(I_c, I_s, M(I_c; w_{s,T}))]$ minimize

subject to $w_{s,0} = \theta$

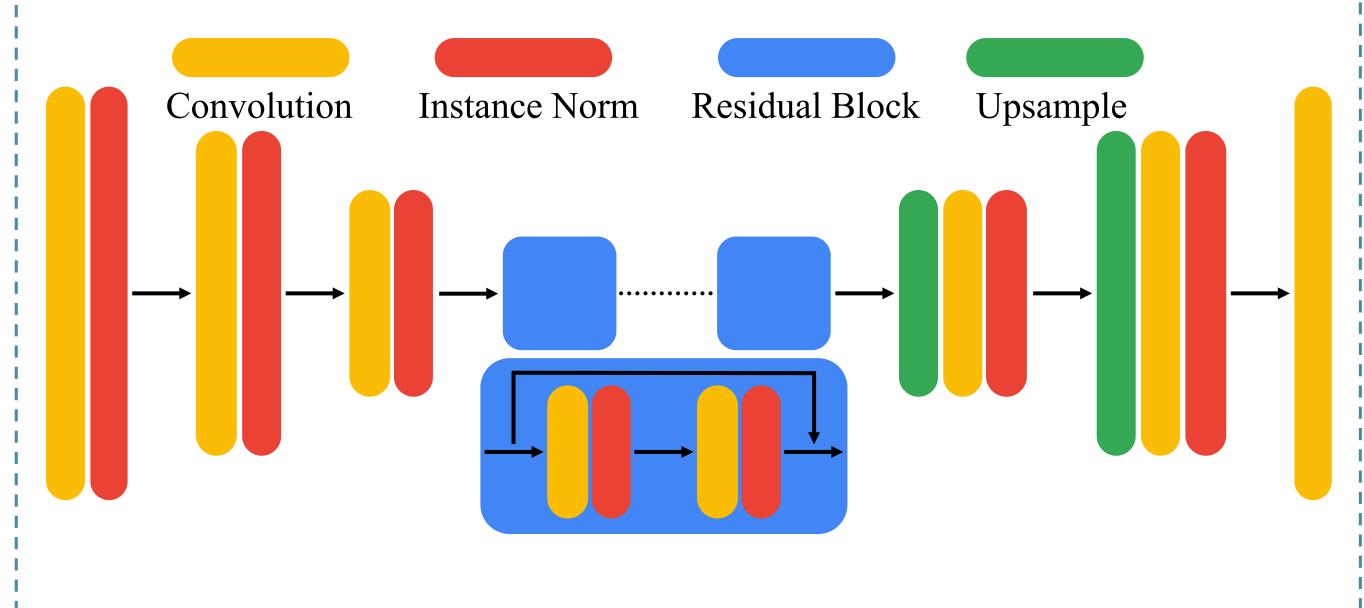
 $w_{s,t} = w_{s,t-1} - \delta \nabla \mathbb{E}_c[\ell(I_c, I_s, M(I_c; w_{s,t-1}))]$

Adaptation

minimize

 $\mathbb{E}_c[\ell(I_c, I_s, M(I_c; w))]$

Network



Algorithm

Algorithm 1: MetaStyle

Input: content training dataset \mathcal{D}_{tr} , content validation dataset \mathcal{D}_{val} , style dataset \mathcal{D}_{style} , inner learning rate δ , outer learning rate η , number of inner updates T

Output: trained parameters θ

randomly initialize θ while not done do initialize outer loss $E \leftarrow 0$ sample a batch of styles from \mathcal{D}_{style} for each style I_s do $w_s \leftarrow \theta$ for $i \leftarrow 1$ to T do sample a batch \mathcal{B}_{tr} from \mathcal{D}_{tr} compute inner loss L_{θ} using I_s and \mathcal{B}_{tr} $w_s \leftarrow w_s - \delta \nabla L_\theta$

> sample a batch \mathcal{B}_{val} from \mathcal{D}_{val} increment E by loss from I_s and \mathcal{B}_{val}

end $\theta \leftarrow \theta - \eta \nabla E$

end

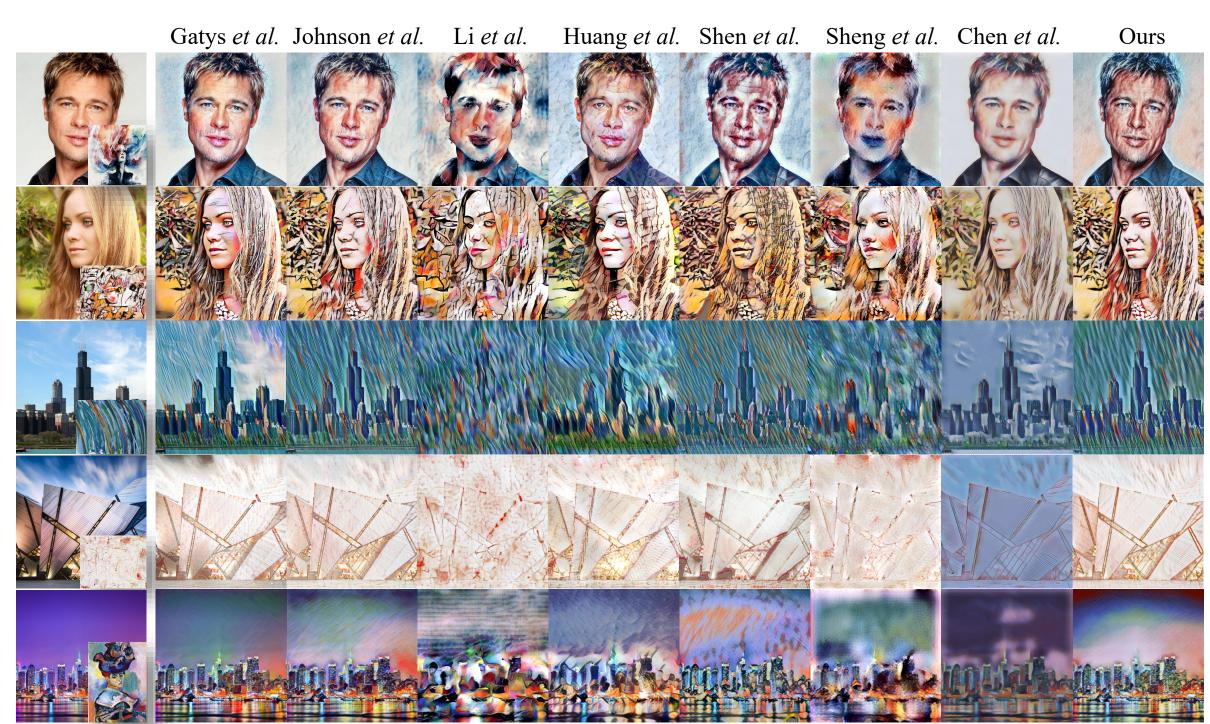
end

Quantitative Results

Method	Param	256 (s)	512 (s)	# Styles
Gatys et al.	N/A	7.7428	27.0517	∞
Johnson et al.	$1.68 \mathbf{M}$	0.0044	0.0146	1
Li et al.	34.23M	0.6887	1.2335	∞
Huang et al.	7.01M	0.0165	0.0320	∞
Shen et al.	$219.32\mathrm{M}$	$\boldsymbol{0.0045}$	$\boldsymbol{0.0147}$	∞
Sheng et al.	$147.22\mathrm{M}$	0.5089	0.6088	∞
Chen et al.	1.48M	0.2679	1.0890	∞
Ours	1.68M	0.0047	0.0145	∞^{\star}

Qualitative Results

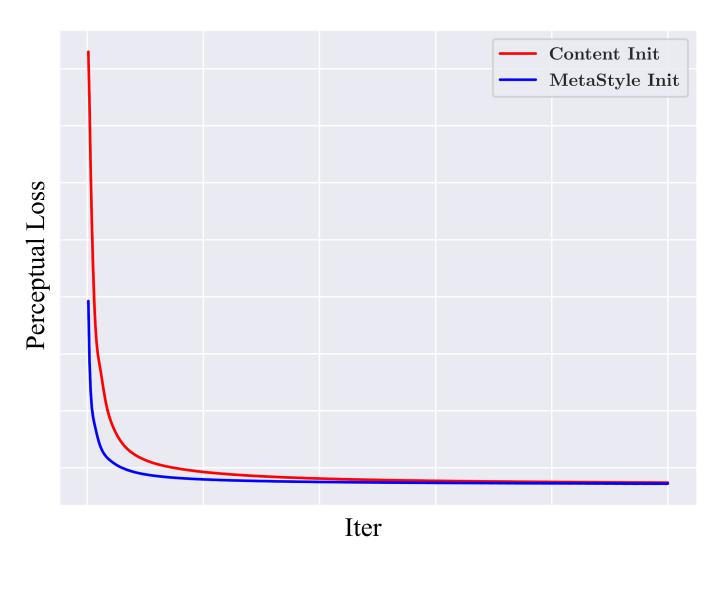
Comparison with Existing Methods



Style Interpolation

Video Style Transfer

Comparison to Gatys et al. with MetaStyle Init



• Comparison to Johnson et al. with MetaStyle

