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Motivation Computational Model

= Evaluating Al Social Intelligence: Investigate whether large language models can match Based on the construction, varying two parameters results in various behaviors.

human-level social intelligence, a key differentiator of human cognition. ” e | e | o
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= Advancing AGI Development: Identify the current limitations of Al in social intelligence to guide ] = vl wih - gl 2 I AR © -
future research and development toward achieving Artificial General Intelligence (AGI). 0.3 0.3 0.3
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mental simulation (a) (0.3, 1) (b) (0.99, 1) (c) (0.3, 100) (d) (0.99, 100)
mj’i Fieure 5. Model predictions based on posterior probability over parameters e~ and e~ on one example (3(c-g)). The
regions are designated according to the route types with the highest posterior. The color intensity within each region
) & indicates the probability gap between the most likely and the second-most likely options, effectively visualizing the
0 a model’s confidence in its predictions. Four figures are labeled by values of parameters (exp(—0),d).
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= Subjects: GPT 3.5 Turbo, GPT 4 Turbo, GPT 4V, and /5 human subjects.
= Experiment types:
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= Bayesian model regression for [IP
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actor observer = Shortcut analysis for IR and IIP
| Result of Experiments on IR
Figure 1. A unified framework of social dynamics. 0 0 0 0 0.04
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Bayesian inference.

_ .. . . : . , : . Ve i Figure 6. Accuracy on the IR Task. In (a) and (b), “Favorite” assesses accuracy for the top preference only, “Visible” for
Empirical Insights: Provide a detailed analysis comparing human participants, state-of-the-art the preference order among {X,Y, Z, M}, and “Strict” for the entire preference order. In (b) and (d), we uniformly use a

language models, and the proposed computational model, highlighting the significant gap between Previsited type case as the one-shot learning example. In (c) and (d), accuracies are evaluated solely based on the

Al and human social cognition. “Strict” criterion.
Evaluation Tasks |4 Result of Experiments on |IP
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social intelligence. IR tasks requires to infer actor’s preference on targets from observation, lIP asks to Avoidant Avoidant " 18T "
plan a path with considering observer’s inference of actor’s destination. é 0.8 o | é 0.8 . | Y oo
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? 1 Figure /. Distribution of Options in IIP. The numerical values at top of each bar represent the respective test counts.
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Carol (actor) In (b) and (d), we uniformly use a Type Ill case as the one-shot learning example.

] Alice (observer) “How can I quickly signal

) my preference to David?”
“What is Bob’s preference yP

0, forall food trucks?” } [ Bayesian Model Likelihood and Regression
Figure 2. A realistic-style figure showing IR and IIP tasks. - 1 ~ “1 .4 X s+ iy >><< T T f‘*
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(a) IR task (b) IR perception () IIP task (a) Intermediate (b) Last (c) Previsited (a) Human (b) GPT-4 (c) -3 plane (d) 6-6 plane
. . A_ Figure 8. IIP modeling results. (a-b) Likelihood landscapes in the a-8 dimension (e=? = 0.99, § = 100), comparing
Q/ | “‘human average” with “GPT-4"; region boundaries and labels are calculated as in 5 on the whole dataset. (c-d)
X X X X r X Regression for human average, LLM and individual humans, mapped onto two planes respectively.
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ohortest Avoidant Reversed Hybrid Figure 4. (a-c) IR task types. (d-g) IIP task types with

Figure 3. Input stimuli examples for both tasks. Hybrid routes. Intermediate Last Previsited Avg
Overall 9257 9714 100.00 96.60 Type | Type I Type lll Type IV Avg
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A general model for ToM is constructed using recursive Bayesian inference. Specific likelihood and Table 1. IR shortcuts analysis on IR accuracy. w/o Type Ill 100.00 9923  5227(-39.39) 8396  83.00
priors are COnstructed for the tWO taskS. w/o Type IV 100.00 100.00 96.21 35.87(-43.52) 82.20
ot T , , w/o Type LIl 65.09(-33.02) 13.74(-86.26)  87.88 81.68  62.00
Algorithm 1: Iterative Bayesian Inference « he H: hypothesis, preference in IR, and Reversed Shortest Avoidant Hybrid Avg 1v_v/E;'Ty:.oge |||||i|3vh 1too.io | 1.oo.\</>\c/) 36.36(t55t.3) 4.|58<7;L.81; 58.20
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Input: Agents i, j, likelihood M, priors destination in 11P. Overal 994 952 910 942 949 0 o0 o o metricy P
Py(7), Pp(h) - - ificat T |
p\"V), Ep\It). = v e I': a finite path set on the 5 by 5 grid. Table 2. lIP path type classification accuracy.
Output: Posteriors M- likelhood. D \ atural
1 2 = M: likelihood. Describing a "natura
(Pp(y), P (h]y), P (7|h), ...). e | g
; statistical relation between ~ and h.
1 Initialize: P/ (y|h)ocM (v, ), k = 0. " In our tasks, M is set to be Conclusion
2 for k = 0to oo do |1 i
2k+1 .— 2k M(~, h)oc . hle™ 1 . . . o . . .
3 P%H(hw ' Png‘h)Pp(h)/P(V) ;1) Zk=1 gp(v[o'k“]’ ) S We introduced a comprehensive benchmark for evaluating social intelligence, comprising a unified
4 P (v|h) =P (h7)Pp(7)/P(h) where a, 8, ¢ are numerical and functional computational frame- work, representative tasks, and evaluation criteria. Our results demonstrate a
5 end . ) parameters. marked superiority of humans over LLMs in social intelligence tasks. We hope that our study con-
6 return (PpW)aP (hly),P=(|h), ) = P,(), P,(h), priors on paths / hypotheses. tributes valuable information towards the advancement of ASI.




