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Motivation

Evaluating AI Social Intelligence: Investigate whether large language models can match

human-level social intelligence, a key differentiator of human cognition.

Benchmarking AI Performance: Provide a systematic framework to evaluate and compare the

social capabilities of AI systems against human performance.

Advancing AGI Development: Identify the current limitations of AI in social intelligence to guide

future research and development toward achieving Artificial General Intelligence (AGI).
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Figure 1. A unified framework of social dynamics.

Contribution

Novel Assessment Framework: Introduce a comprehensive benchmark for evaluating social

intelligence through tasks like Inverse Reasoning (IR) and Inverse Inverse Planning (IIP), assessing

critical cognitive dimensions.

Recursivef Bayesian Inference Model: Present a computational model capable of interpreting

social interactions and capturing the nuances of human social reasoning through recursive

Bayesian inference.

Empirical Insights: Provide a detailed analysis comparing human participants, state-of-the-art

language models, and the proposed computational model, highlighting the significant gap between

AI and human social cognition.

Evaluation Tasks

Two basic tasks, Inverse Reasoning (IR) and Inverse Inverse Planning (IIP), are desined to evaluate

social intelligence. IR tasks requires to infer actor’s preference on targets from observation, IIP asks to

plan a path with considering observer’s inference of actor’s destination.
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"It seems that Bob prefers the brown food 
truck the best. He searched all over and 
found out that truck didn't come today, so 
he finally went to the green truck."

"I better go this way, so David will 
quickly understand that I prefer 
hamburger rather than coffee."

“What is Bob’s preference 
for all food trucks ?”

“How can I quickly signal 
my preference to David?”

Figure 2. A realistic-style figure showing IR and IIP tasks.
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Figure 3. Input stimuli examples for both tasks.
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Figure 4. (a-c) IR task types. (d-g) IIP task types with

Hybrid routes.

Computational Model

A general model for ToM is constructed using recursive Bayesian inference. Specific likelihood and

priors are constructed for the two tasks.

Algorithm 1: Iterative Bayesian Inference

Input: Agents i, j, likelihood M , priors

Pppγq, Ppphq.

Output: Posteriors
`

Pppγq,P1ph|γq,P2pγ|hq, ...
˘

.

1 Initialize: P0
i pγ|hq9Mpγ, hq, k “ 0.

2 for k “ 0 to 8 do

3 P2k`1ph|γq :“ P2kpγ|hqPpphq{Ppγq

4 P2k`2pγ|hq :“ P2k`1ph|γqPppγq{Pphq

5 end

6 return
`

Pppγq,P1ph|γq,P2pγ|hq, ...
˘

.

h P H : hypothesis, preference in IR, and

destination in IIP.

γ P Γ: a finite path set on the 5 by 5 grid.
M : likelihood. Describing a “natural”

statistical relation between γ and h.

In our tasks, M is set to be

Mpγ, hq9
ÿ|γ|´1

k“1 ϕpγr0:k`1s, hqe´βk, (1)

where α, β, ϕ are numerical and functional

parameters.

Pppγq,Ppphq, priors on paths / hypotheses.

Computational Model

Based on the construction, varying two parameters results in various behaviors.

(a) (0.3, 1) (b) (0.99, 1) (c) (0.3, 100) (d) (0.99, 100)

Figure 5.Model predictions based on posterior probability over parameters e´α and e´β on one example (3(c-g)). The

regions are designated according to the route types with the highest posterior. The color intensity within each region

indicates the probability gap between the most likely and the second-most likely options, effectively visualizing the

model’s confidence in its predictions. Four figures are labeled by values of parameters pexpp´θq, δq.

Experiments

Subjects: GPT 3.5 Turbo, GPT 4 Turbo, GPT 4V, and 75 human subjects.

Experiment types:
Zero-shot vs. one-shot for IR and IIP

Text vs. image for IR and IIP

Bayesian model regression for IIP

Shortcut analysis for IR and IIP
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(a) Overall Zero-Shot
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(b) Overall One-Shot
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(c) Type-specific Zero-Shot
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Figure 6. Accuracy on the IR Task. In (a) and (b), “Favorite” assesses accuracy for the top preference only, “Visible” for

the preference order among tX, Y, Z, Mu, and “Strict” for the entire preference order. In (b) and (d), we uniformly use a

Previsited type case as the one-shot learning example. In (c) and (d), accuracies are evaluated solely based on the

“Strict” criterion.
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(a) Overall Zero-Shot
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(b) Overall One-Shot
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(c) Type-specific Zero-Shot
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(d) Type-specific One-Shot

Figure 7. Distribution of Options in IIP. The numerical values at top of each bar represent the respective test counts.

In (b) and (d), we uniformly use a Type III case as the one-shot learning example.
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Figure 8. IIP modeling results. (a-b) Likelihood landscapes in the α-β dimension (e´θ “ 0.99, δ “ 100), comparing
“human average” with “GPT-4”; region boundaries and labels are calculated as in 5 on the whole dataset. (c-d)

Regression for human average, LLM and individual humans, mapped onto two planes respectively.

Chart-area Shortcut Analysis

Intermediate Last Previsited Avg

Overall 92.57 97.14 100.00 96.60

w/o Last 81.27 0.00 95.76 59.00

w/o Intermediate/Last 0.00 0.00 100.00 33.33

w/o Last/Previsited 100.0 0.00 0.00 33.33

Table 1. IR shortcuts analysis on IR accuracy.

Reversed Shortest Avoidant Hybrid Avg

Overall 99.4 95.2 91.0 94.2 94.9

Table 2. IIP path type classification accuracy.

Type I Type II Type III Type IV Avg

Overall 98.11 100.00 91.66 79.39 92.00

w/o Type I 94.33 98.47 94.69 90.07 94.40

w/o Type II 99.05 66.41(-33.59) 90.90 82.44 84.00

w/o Type III 100.00 99.23 52.27(-39.39) 83.96 83.00

w/o Type IV 100.00 100.00 96.21 35.87(-43.52) 82.20

w/o Type I,II 65.09(-33.02) 13.74(-86.26) 87.88 81.68 62.00

w/o Type III,IV 100.00 100.00 36.36(-55.3) 4.58(-74.81) 58.20

Table 3. IIP shortcuts analysis. We use route type classification

accuracy (%) as the metric.

Conclusion

We introduced a comprehensive benchmark for evaluating social intelligence, comprising a unified

computational frame- work, representative tasks, and evaluation criteria. Our results demonstrate a

marked superiority of humans over LLMs in social intelligence tasks. We hope that our study con-

tributes valuable information towards the advancement of ASI.


