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Supplementary Materials

Figure S1 presents additional generalization experiment results using the improved GEP. Each

augmented 3D-printed cap generates a significantly different time-series haptic signal, indicat-

ing the haptic interactions are substantially different from one another. These results demon-

strate the GEP’s ability to transfer to bottles with haptic signals that are different from the ones

in the demonstration.

We qualitatively analyze one example in Figure S2 to further justify that the generaliza-

tion scenarios are significantly different from the testing scenarios by comparing the haptic

signals between the two. Specifically, given one haptic signal in testing and one in generaliza-

tion performing the very same action, we treat these two sets of haptic signals as time series

data and estimate the trend using kernel methods. After obtaining the trend, a rigorous test-

ing procedure (33) for evaluating whether these two haptic signals have the same distribution

is performed by comparing the L2 distance between the curves. The results indicate that the

haptic signals of all bottles are significantly different from one another; ∆ is not closed to 0.

A comprehensive, quantitative analysis of more haptic signal data is presented as a confusion

matrix in Figure S3).

We also note that an alternative model commonly used for this type of analysis is the

ARIMA method. However, our observations (haptic signals) are mean non-stationary, which is

not suitable for ARIMA; ARIMA works well for an integrated process.

Text S1. Additional model results



S2 Additional aterials and ethods

Generating a smooth action sequence mapped from a human demonstration to a robot is a non-

trivial task. In this paper, for the symbolic planner, we simplified this process by assuming

each mapped action is executable by the Baxter robot; each atomic action or motion primitive

(terminal node in the grammar) is designed, not automatically learned. However, this should

not impact the overall contributions presented in the paper, as the mapping in a supervised

fashion does not affect the experiments for evaluating human trust. In addition, this embodiment

problem is solvable in some instances if we introduce the concept of “mirroring” (34).

Our approach assumes that each robot action corresponds to an equivalent human action.

However, if adopted after learning the grammar, trajectory optimization methods (e.g., CHOMP (35),

STOMP (36), and TrajOpt (37)) could improve the action/behavior of the robot to generate

smoother action sequences, or even produce different actions that are not the same as the hu-

man demonstrations. In addition, a grammar can, in fact, generate sequences that are not seen

in demonstrations because of the compositional nature of the grammar rules; in other words, it

is possible for the robot to solve the tasks using different action sequences from human sampled

from the grammar model. Nevertheless, a grammar has no inherent mechanism for the robot to

discover entirely new actions for the task.

In this section, we present the implementation detail for reproducibility.

Network Architecture The autoencoder is constructed with a multi-layer perceptron (MLP);

see Table S2. The human embedding can be obtained with a forward pass through the network.

The supervision for the autoencoder is the original human post-condition. The loss is measured

Text . m m
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by the reconstruction error. The robot-human embodiment mapping is implemented with an

MLP; see Table S3. The embodiment mapping is trained using equivalent human and robot post-

conditions (equivalent here means the post-condition of executing the same action successfully).

The human post-condition is fed through the autoencoder to produce a human embedding, and

this embedding serves as the supervision target for the embodiment mapping network. The

last major component of the embodied haptic prediction model is the action predictor, also

implemented with an MLP; see Table S4. The supervision for the action predictor is the ground-

truth human action labels.

Training Details We adopt a two-step updating schema for the embodied haptic model. In the

first step, we feed forward the human post-condition data into the autoencoder. The encoder will

reduce the high-dimensional human data to a low-dimensional human embedding; the encoder

and the decoder are learned with hyper-parameter shown in Table S5. The supervision for the

autoencoder is the reconstructed original human post-condition. In the second step, with the

human embedding and the action labels, the action predictor and the embodiment mapping

are training jointly with the hyper-parameters shown in Table S5. The embodiment mapping

is trained using equivalent human and robot post-conditions (equivalent here means the post-

condition of executing the same action successfully). The human post-condition is fed through

the autoencoder to produce a human embedding, and this embedding serves as the supervision

target for the embodiment mapping network. The supervision for the action predictor is the

ground-truth human action labels.

In this paper, we use 15 IMUs to obtain the relative poses of finger phalanges with respect to the

wrist (see Figure S6A) and develop a customized force sensor using a soft piezoresistive mate-

Text S2.3. Details on tactile glove



rial (Velostat) whose resistance changes under pressure (28). The 26 force sensors are placed on

the palm and fingers, as shown in Figure S6B. The force sensor is constructed in a 5-layer, mir-

rored structure—Velostat is the inner layer, conductive fabric and wires are the middle layers,

and insulated fabric is the outer layer. Figure S6C illustrates the structure of the force sensor,

and the force-resistance relation is characterized as Figure S6D. In total, the glove provides 71

degrees of freedom, including all pose and force measurements of the hand, resulting in a fine-

grained reconstruction. The relative poses between the hand and manipulating objects (bottles

and caps) are captured by a Vicon motion capture system. We capture 64 demonstrations in to-

tal; the number of demonstrations varies by the number of possible grasping approaches human

demonstrators found natural. Twenty-nine demonstrations were collected for the Bottle 1, 23

for Bottle 2, and 12 for Bottle 3.

To visualize the forces imposed by the robot gripper, we first identify the max force magnitude

in all the force signal data collected from human demonstrations. Then, all force data is nor-

malized to the value between 0 and 1, where 0 corresponds to pure green in the visualization,

and 1 pure red. The value in between is interpolated linearly and displayed on the robot’s palm.

The prediction phase evaluates how well each explanation panel imparts prediction ability after

observing a robot’s behaviors in solving the problem of opening a medicine bottle. Note that

during the familiarization phase, the robot explains its behavior through explanatory panels, but

during the prediction phase, subjects observe the robot executing the task with only the RGB

videos. Thus our prediction question asks “after familiarizing with explanatory panels, how

well are human subjects able to predict robot behavior when observing only RGB robot exe-

Text S2.4. Force visualization
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cutions?” The prediction accuracy is computed as the percentage of correct action predictions

in the sequence. This experimental design examines how well each explanatory panel imparts

prediction ability under new robot executions where no explanation panel is available. For each

question, participants selected from 8 actions: push on the cap, pinch the cap, pull the cap,

twist the cap, grasp the cap, ungrasp the cap, move the left robot arm to grasping position, and

nothing.



no lock push-twist 
to unlock

no lock push-twist 
to unlock

push-twist 
to unlock

push-twist 
to unlock

no lock no lock

; the same data was
used in Figure 7.

Qualitative Trust Prediction Accuracy
Mean Std. dev. Mean Std. dev.

Baseline 71.7 16.8 0.481 0.176
GEP 82.6 17.5 0.644 0.202

Symbolic 81.9 17.4 0.641 0.228
Haptic 75.7 16.2 0.541 0.231

Text 70.1 22.7 0.593 0.218

Fig. S1. Additional generalization experiments on bottles augmented with different 3D-
printed caps. The GEP shows good performance across all bottles, indicating the GEP is able 
to generalize to bottles with similar locking mechanisms as in the human demonstrations, but 
significantly different haptic signals. 

Table S1. Numerical results and SDs for human participant study



An example of the haptic signal in the testing scenario
raw haptic data
estimated trend

An example of the haptic signal in the generalization scenario
raw haptic data
estimated trend

Fig. S2. Examples of estimated trends for testing and generalization haptic data. 
Examples of aligned haptic signals in time used in testing (top) and generalization (down) data. 
The haptic data was collected by executing the same actions on various bottles in testing and 
generalization scenarios. Light blue dots denotes raw noisy haptic signals. The solid red line 
denotes the estimated trend for statistical analysis. 



Confusion matrix of Δ across different bottles 

Higher ∆ values indicate lower similarity.

Fig. S3. The confusion matrix of Δ across different bottles based on the haptic signals. 
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Fig. S4. An example of action grammars and grammar prefix trees used for parsing. (A) 
An example action grammar. (B) A grammar prefix tree with grammar priors. The numbers 
along edges are the prefix or parsing probabilities of the action sequence represented by the 
path from the root node to the node pointed by the edge. When the corresponding child node 
of an edge is an action terminal, the number along the edge represents a prefix probability; 
when the corresponding child is a parsing terminal  , the number represents the parsing 
probability of the entire sentence. In this example, the action sequence “grasp, push, twist, 
pull” has the highest probability of 0.6. The root    represents the empty symbol where no 
terminals were parsed.  
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Fig. S5. An example of the GEP. An illustration of the parsing process of the Generalized 
Earley Parser (GEP). It performs a heuristic search in the prefix tree according to the 
prefix/parsing probability. It iteratively expands the tree and computes the probabilities as it 
expands the tree. The search ends when it hits a parsing terminal e. The paths in bold indicate 
the best candidates at each search step. 



Input : Grammar G, Haptic Model H , Maximum Step T
InputStream : Haptic Signal ft
OutputStream: Robot Executable Action at+1

1 t = 0
2 Initialize empty matrix y0
3 while t <= T do
4 if t == 0 then
5 p(at+1) = uniformVector()
6 else
7 ft+1 = getHapticSignal()
8 p(at+1) = hapticPlanner(ft, at;H) // Equation 1
9 end

10 y
′
t+1 = [yt; p(at+1)] // Append probability vector to one-hot matrix yt

11 at+1 = prefixSearch(G, y
′
t+1) // Equation 7

12 yt+1 = [yt; oneHot(at+1)] // Extend one-hot matrix from yt to yt+1

13 executeRobotAction(at+1)
14 if goalAchieved() then break
15 t = t+ 1

16 end

Algorithm S1. Algorithm of the improved GEP for robot planning.



Operator Params
Linear 80
ReLU
Linear 64
ReLU
Linear 16
ReLU
Linear 8
ReLU
Linear 16
ReLU
Linear 64
ReLU
Linear 80

Operator Params
Linear, Linear 3, 1
ReLU, ReLU
Linear, Linear 128, 128

ReLU
Linear 8

Table S2. Network architecture and parameters of the autoencoder. Network architecture 
is defined from the top of the table to the bottom, with the first and last layer being input and 
output, respectively. 

Table S3. Network architecture and parameters for robot to human embedding. Network 
architecture is defined from the top of the table to the bottom, with the first and last layer being 
input and output, respectively. 



Operator Params
Linear, Linear 8, 13
ReLU, ReLU
Linear, Linear 64, 64

ReLU
Linear 10

Parameter Value
Autoencoder learning rate 5e-5
Action predictor learning rate 5e-5
Balance param. (β) 1
Batch size 16
No. of epochs 150

Table S4. Network architecture and parameters for action prediction. Network 
architecture is defined from the top of the table to the bottom, with the first and last layer being 
input and output, respectively. 

Table S5. Hyperparameters used during training. 



Fig. S6. Tactile glove hardware design. (A) The dorsum of the tactile glove developed for 
the present study consisting of 15 IMUs. (B) 26 integrated Velostat force sensor on the palmar 
aspect of the hand. (C)The structure of the force sensor. (D) Characteristics of the forcevoltage 
relation, which is described by a logarithmic law of the force sensor. 



Parts Description
Robot Baxter
Manipulator Right: ReFlex TackkTile gripper. Left: Robotiq S85 parallel gripper
Computer ZOTAC ZBOX-EN1070K: i5-7500T with GTX 1070
Vision sensor Kinect v2

Table S6. Specifications of the computing platform used in the experiments. 



  Fig. S7. Qualitative trust question asked to human participants after observing two 
demonstrations of robot execution. This question was immediately asked after the 
familiarization phase of the experiment; in other words, we asked this question immediately 
after the subjects had observed robot executions with access to the explanation panel (if the 
subject’s group had access to an explanation panel; i.e. all groups except baseline). 



Fig. S8. Prediction accuracy question asked to human participants after each segment of 
the robot’s action sequence during the prediction phase of the experiment. No group had 
access to explanation panels during the prediction phase; subjects had to predict the action 
while only observing RBG videos of each action segment. 
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