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(a) Abstract-level Structure Learning

INTRODUCTION
* Learning transferrable knowledge across similar but different settings 1s a Atomic schema, g p(g™;7)
fundamental component to generalized intelligence.
* QOur agent 1s endowed with two basic yet general theories for transfer
learning: v v
1. A task shares a common abstract structure that is invariant across Abstract schema, g° Plg"s
domains, and
2. The behavior of specific features of the environment remain constant
across domains. Y v
Instantiated schema, g’ p(g*|do(q);~)

« RL agents showed poor ability transferring learned knowledge across
different trials.

Uninstantiated
causal chain

* The proposed model revealed similar performance trends as human learners,
- - - v
and more importantly, demonstrated transfer behavior across trials and Causal chain.
learning situations.
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| § (c) Instance-level Inductive Learning
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Figure 1: (a) Starting configuration of a 3-lever OpenLock room. The arm 1n Causal event, p;
the middle can interact with levers by either pushing outward or pulling
inward. The door can be pushed only after being unlocked. The black circle on
the door indicates whether or not the door 1s unlocked. (b) Pushing on a lever.
(¢) Opening the door. (d) CC3 causal structure. (¢) CE3 causal structure. (1)
CC4 causal structure. (g) CE4 causal structure.
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Figure 2: Illustration of top-down and bottom-up processes. (a) Abstract-
level structure learning hierarchy. (b) The subchain posterior computed using
the abstract-level structure learning and instance-level inductive learning. (c)
Instance-level inductive learning.
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2. Causal structures that have previously been useful may be useful in the

future (referred to as our top-down v theory). Figure 3: RL results for baseline and transfer conditions. Baseline (no

transfer) results show the best-performing algorithms (PPO, TRPO) achieving
approximately 10 and 25 attempts by the end of the baseline training for CC4
and CE4, respectively. A2C 1s the only algorithm to show positive transfer;
A2C performed better with training for the CC4 condition. The last 50
iterations are not shown due to the use of a smoothing function.

Attribute Learning: Attributes provide time-invariant properties of an object;
we learn which attributes are associated with causal events.

Schema Learning: We utilize a Bayesian hierarchy, starting abstract
structural schemas g#, that encode abstract descriptions of the task.
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 The agent uses a model-based planner to produce action sequences Figure 4: Results using the proposed theory-based causal transfer. (a)
capable of opening the door. The agent's final planning goal 1s Proposed model baseline results for CC4/CE4. We see an asymmetry
. g . between the difficulty of CC and CE. (b) Human baseline performance from
a; = argmax p(a;|p;, do(T,q);7, ) Edmonds et. al 2018. (¢) Proposed model transfer results for training in
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a;C2la CC3/CE3. (d) Human transfer performance from Edmonds et. al 2018.



