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A Overview
This supplementary document provides additional formu-
lation details, technical details, extra analysis experiments,
more quantitative and qualitative test results to the main pa-
per.1

Section B provides additional implementation details on
our causal theory-based learning scheme; additional abla-
tion results are presented in Section C. Section D details the
reinforcement learning (RL) model including architectures
and hyper-parameters, and Section E showcases additional
details on ourRL experimental procedure. These experi-
ments are organized by different Reinforcement Learning
algorithms, casual schemas, and reward strategies.

B Causal Theory Induction
In this section, we outline additional details on our model.
In particular, we provide additional details on the agent's
bottom-up instance-level learning and top-down abstract-
level structure learning.

B.1 Instance-level Inductive Learning
Here, we outline additional formulation and implementation
details regarding our instance-level learning scheme. This
scheme combines a set of attributes with a single action
but can be easily extended to include multiple actions or
additional dimensions to consider for instance-level learning.
This knowledge encodes a naive Bayesian view of causal
events by independently examining how frequently attributes
and actions were involved in causal events. First, we revisit
our formulation:
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wherek is the number of attributes of the state nodesi in
ci . We assumep(� i ; � ) is uniform. Note that this derivative
is effectively a Naive Bayes approximation of the true joint
distribution,p(� i j� i 0; : : : ; � ik ; ai ; � ).

1A video demonstration of the environment and model execu-
tion can be found in the submitted supplementary materials or at
http://138.68.224.173/aaai20/video_demo.mp4

B.2 Abstract-level Structure Learning
In this section, we provide additional details about our ab-
stract schema learning scheme. We will begin with the belief
in abstract schemas, de�ned as:

p(gA ;  ) =
X

gM 2 
 g M

p(gA jgM )p(gM ;  ); (8)

wherep(gM ;  ) is the prior over atomic schemas, whose
parameters are provided by the atomic schema Dirichlet dis-
tribution. Thep(gA jgM ) is computed as a exponential distri-
bution:

p(gA jgM ) =
1
Z

exp(� D (gA ; gM )) ; (9)

whereD(gA ; gM ) is the graph edit distance between the
abstract schemagA and the atomic schemagM , andZ is the
normalizing constant,Z =

P
gA 2 
 g A

exp(� D (gA ; gM )) .
Next, we compute the belief in an instantiated schema as:

p(gI jdo(q);  ) =
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wherep(gI jgA ; do(q)) is computed as a uniform distribution
among allgI that haveD(gI ; gA ) = 0 (ignoring vertex labels)
andcontain the solutions found thus farq, and 0 elsewhere.
Next, the belief in a chain is computed as:

p(cjdo(q);  ) =
X
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p(cjgI ; do(q))p(gI jdo(q);  ): (11)

Similarly, p(cjgI ; do(q)) is uniform across allc2 gI and 0
elsewhere. Finally, we compute the belief in each possible
subchain as:

p(ci jdo(r; q);  ) =
X

c2 
 C

p(ci jc; do(�; q ))p(cjdo(q);  ); (12)

wherep(ci jc; do(�; q)) is uniform across allci 2 c and 0 else-
where.

C Ablation Results
In this section, we present additional results from our pro-
posed method. Speci�cally, we show how well the model
performs under two ablations: (i) top-down structure learning
and (ii) bottom-up instance learning. This examination seeks
to identify to what degree and how well much each model
component contributes to the model's performance. In our
formulation, these ablations amount to setting a probability
of 1 for the ablated component in the subchain posterior;
i.e., the subchain posterior reduces to the remaining active
model component (bottom-up during a top-down ablation
and top-down during a bottom-up ablation).

Figure 1 shows the results of the ablated model. In Fig-
ure 1a and Figure 1b, the model is ablated to disable the top-
down abstract structure learning. We see the agent performing
with similar trends as the full model results, but with worse
performance. This is due to the agent learning the bottom-up
associative theory regarding which instances can be manipu-
lated to produce a causal effect, but the agent performs worse
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Figure 1: Results using the proposed theory-based causal transfer under ablations. (a) Proposed model baseline results under a
top-down ablation (i.e., only instance-level learning occurred). (b) Proposed model transfer results under a top-down ablation. (c)
Proposed model baseline results under a bottom-up ablation (i.e., only abstract-level structure learning occurred). (b) Proposed
model transfer results under a bottom-up ablation.
due to the lack of task structure. During transfer, we see
little difference (with no signi�cance;t(79) = 0 :8;p= 0 :42
andt(79) = 0 :8;p= 0 :43 for Common Cause 4 (CC4) and
Common Effect 4 (CE4) respectively) between the training
groups. This is expected; an agent that learns no task struc-
ture should exhibit no difference between tasks. This agent
is essentially aimlessly searching the structure space, biased
towardsanystructure with subchains with a high likelihood
of producing a causal event.

Figure 1c and Figure 1d show the model ablated with the
bottom-up instance learning disabled. In the baseline results,
we see a slight increase in performance over time forCC4;
this is because the agent is becoming more con�dent in which
structure governs the environment. However, this version of
the model has no regard for whether or not an agent can
interact with a particular instance (i.e., it lacks the bottom-up
associative theory regarding causal events). Because of this
limitation, the agent must try many possible instantiations of
the correct abstract structure before �nding a solution. During
transfer, we see the agent bene�ting most from training in
Common Cause 3 (CC3), which is counter-intuitive for the
CE4 transfer condition.

However, we believe this is best explained from a decision
tree perspective, as elaborated in the main text. Throughout
all model and human experiments, we observed that Common
Effect (CE) was more dif�cult than Common Cause (CC).
From a decision tree perspective, agents that learn aCCstruc-
ture will �rst identify the �rst lever in the structure; this is the
only lever they can interact with initially. After identifying
this lever, they can then push on either remaining lever to
unlock the door. While this strategy will not work forCE
directly, it may still bene�t an agent only equipped with struc-
ture learning. For instance, when applying this strategy toCE,
the agent may �nd the�rst solution faster. After �nding the
�rst solution, the space of second solutions is constrained to
contain the �rst solution. From here, despite having learned
the “wrong” structure for this task, the agent may �nd both re-
maining solutions faster. This is an unexpected phenomenon
and will be examined as future work.

D Details of Reinforcement Learning Model
In the section, we will detail the OpenLock experiment for
RL agents, hyper-parameters, and training procedures used
for our experiments. These hyper-parameters are selected via

a grid search.

D.1 Overview

In RL experiments, we want to answer:

1. Can predominate, state-of-the-art model-freeRL algo-
rithms solve the OpenLock task?

2. What transferable representations, if any, do theseRL
agents establish?

Notice our task de�nition requires agents to �ndall solu-
tions in a trial. This requirement means that an agent that
memorizesand biases to speci�c one solution will be scored
badly under our evaluation method. Agents must form ab-
stract transferable notions of the task or must memorize all
possible settings of the task.

To answer the �rst question, we show the performances
of typical RL algorithms. We try to improve their perfor-
mances by providing several reward strategies. The details
of algorithms, tasks, and rewards we used can be found in
Section D.3.

To answer the second question, if the agents are able to
establish such concepts, they can master the task with similar
casual schema both better and faster than training on that
task from scratch;i.e., we expect to see a positive transfer.
In this experiment, all the agents are �rst trained on 3-lever
tasks, then we transfer these agents to target 4-lever tasks
using �ne-tuning. By comparing the results in our transfer
experiments with directly training on target tasks (i.e., base-
line experiments), we can verify whether the agents are able
to build such abstract casual concepts.

D.2 State and Action Spaces in OpenLock

In this section, we outline some speci�cations to OpenLock
environment. Readers are encouraged to examine (Edmonds
et al. 2018) for additional details.

� State Space:The state space consists of 16 binary dimen-
sions: 7 for the state of each lever (pushedor pulled), 7
dimensions for the color of each lock (greyor white), 1
dimension for the state of the lock (lockedor unlocked),
and 1 dimension for the state of the door (closedor open).

� Action Space:The action space is a discrete space with
15 dimensions: each of the 7 levers has 2 actions (pushand
pull), and the door has one action (push).



D.3 Algorithms, Casual Schemas and Rewards

We select a set of predominate, state-of-the-artRL algo-
rithms as baselines, including Deep Q-Network (DQN) (Mnih
et al. 2015), DQN with prioritized experience replay
(DQN-PE) (Schaul et al. 2016), Advantage Actor-Critic
(A2C) (Mnih et al. 2016), Trust Region Policy Optimization
(TRPO) (Schulman et al. 2015), Proximal Policy Optimiza-
tion (PPO) (Schulman et al. 2017) and Model-Agnostic Meta-
Learning (Finn, Abbeel, and Levine 2017). Table 1 lists all
the baselines we considered. These algorithms have been ap-
plied to solve a variety of tasks including Atari Games (Mnih
et al. 2015), classic control, and even complex visual-motor
skills (Levine et al. 2018), and they have shown remarkable
performance on these tasks when large amounts of simulated
or real-world exploration data are available.

Additionally, we also include a strong baseline of Model-
agnostic Meta Learning (MAML ) (Finn, Abbeel, and Levine
2017). Note that theMAML does not employ a standard
transfer learning setting as it requires to access the target
task during the meta-learning phase, which can be more
advantageous than other transfer methods. Our main goal is
to verify whether the state-of-the-art meta-learning algorithm
(i.e., MAML ) can solve the OpenLock task by forming the
correct causal abstraction of the task.

However, these algorithms cannot fully succeed in Open-
Lock even after exploring during a large number of episodes.
In the experiments, we use four casual schemas:CC3,
Common Effect 3 (CE3), CC4, CE4. We have two exper-
imental settings: (i) baseline, where agents are trained in a
4-lever condition (i.e. CC4or CE4) and (ii) transfer, where
agents are trained in a 3-lever condition (i.e. CC3or CE3)
and then transfer to a 4-lever condition (i.e. CC4 or CE4).

Now we will discuss the reward strategies we used in base-
line experiments. Rewards in the OpenLock environment are
very sparse; agents must search in a large space of possible
attempts (i.e. action sequences) of which there are 2 or 3
action sequences that achieve the task. Sparse rewards have
traditionally been a challenge forRL (Sutton and Barto 1998).
To overcome this, we enhance the reward by shaping it to pro-
vide better feedback for the agent; we introduce task-relevant
penalties and bonuses. We utilize 6 reward strategies:

Basic (B) The agent will receive a reward for unlocking
the door and will receive the largest reward for opening the
door. No other rewards are granted for all other outcomes.

Unique Solution (U) Inherits from Reward B, but the
agent only receives a reward when unlocking/opening the
door with a new solution. There are a �nite (2 for 3-lever trials
and 3 for 4-lever trials) number of solutions. This reward is
designed to encourage the agent to �nd all solutions within a
trial, instead of only �nding/pursuing the �rst solution found.

Reward B and Negative Immovable (B+N) Inherits from
Reward B, but introduces an extra penalty for manipulating
an immovable lever (Reward N). This is judged by whether a
state change occurs after executing an action; this penalty is
designed to encourage the agent to only interact with movable
levers.

Reward U and Negative Immovable (U+N) This reward
is a combination of Reward U and the Negative Immovable
penalty (Reward N) introduced in Reward B+N.

Reward N and Solution Multiplier (N+M) This reward
inherits from Reward B, but in this reward setting, we encour-
age the agent to �nd out more solutions in a slightly different
way from Reward U. Instead of only providing reward when
�nishing the task with a new solution, the agent will receive
a reward every time it unlocks/opens the door, but when the
agent �nds a unique solution, the reward it receives is multi-
plied by a �xed factor (> 1). This effectively encourages our
agent to �nd new solutions in a more reward-dense setting.
In addition, we also use the Negative Immovable penalty
(Reward N) for learning ef�ciency.

Reward N+M and Partial Sequence (N+M+P) Inherits
from Rewards B, N, and M, but adds a Partial Sequence
bonus. When the executed action sequence is exactly a pre-
�x of a solution to the current trial (no matter whether this
solution has been found out or not), the agent will receive
a bonus. This is a form of reward shaping to overcome the
sparse reward problem.

D.4 Hyper-parameters and Training Details

Table 2 presents the hyperparameters and training details for
our experiments. We select these parameters through several
preliminary experiments.

E Additional Results on
Reinforcement Learning Experiments

In the section, we will �rst introduce theRL experiments are
organized, then show the results for the baseline, training and
transfer experiments, and �nally provide some intuitions and
analysis.

E.1 Experimental Procedure

Here we describe the complete experimental procedures for
RL agents. Each agent is trained for200iterations. In each
iteration, there are6 trials for 3-lever tasks (CC3andCE3;
referred to as the training phase) and5 for 4-lever tasks (CC4
andCC4; referred to as the testing phase). Agents are allowed
to take at most700attemptsto �nd all of the solutions within
a trial. A typical trial proceeds as follows:

1. A new trial starts.

2. Agent is allowed for taking a �nite number of attempts
to �nd all solutions. An attempt will start from the initial
state of the environment, and end with opening the door or
reaching the maximum action limit.

3. A trial ends either when all the solutions have been found
or the agent reaches the maximum attempt limit.

4. After �nding all solutions or running out of attempts, the
agent is placed in the next trial withdifferentlever con�g-
urations but the same casual schema during the training
phase.

5. After completing all trials in the training phase, the agent
is placed into a single 4-lever trial for the testing phase.



For baseline experiments
(To answer Q1 in Section D.1)

For transfer experiments
(To answer Q2 in Section D.1)

DQN on 3-lever task from scratch Fine-tune DQN on 4-lever task
DQN-PE on 3-lever task from scratch Fine-tune DQN-PE on 4-lever task

A2C on 3-lever task from scratch Fine-tune A2C on 4-lever task
TRPO on 3-lever task from scratch Fine-tune TRPO on 4-lever task
PPO on 3-lever task from scratch Fine-tune PPO on 4-lever task

MAML (Meta learning with 3 and 4-lever tasks) MAML (N shot adaption on 4-lever task)

Table 1: Baselines used in our experiments.

Table 2: Hyperparameters and training details.

Parameter Value

Shared
Optimizer Adam
Learning rate 3e� 4

Discount ( ) 0.99
Architecture of policy and value networks(128, 128)
Nonlinearity Tanh
Batch size 2048
L2 regularization 0.001

DQN/DQN-PE
Size of replay buffer 10000
Epsilon for exploration 0.9
Epsilon decay interval 50
Epsilon decay method exponential
Epsilon decay ending 0.05

TRPO
Maximum KL divergence 0.01
Damping 0.01

MAML
Meta optimizer TRPO

Others
Reward multipliers 1, 10, 20 for 1st, 2nd and 3rd solution
Repeated times 10
Total number of experiments 1800

We have6 con�gurations in total for 3-lever tasks and5 for
4-lever tasks. The con�guration of the lever is selected in
a loop; the initial order of the con�gurations is randomized
per agent, but each agent see the same room ordering for the
entire experiment.

We evaluate the �nal performances after all iterations are
�nished. The details of the evaluation are discussed in Sec-
tion E.2.

E.2 Evaluation Details
We expect an agent learning the correct abstractions and
generalizations to quickly adapt to similar but slightly differ-
ent circumstances. More speci�cally, an agent learning the
correct abstractions should perform better (i.e. have lower

attempts) as the agent encounters more trials with the same
causal schema. We propose several criteria to evaluate agents.
In our plots (Figure 2-8), we list 3 different curves:

� Attempt Amount This curve shows the number of at-
tempts used in each trial. Since a trial terminates when
all solutions have been found, an agent with better perfor-
mance will have fewer attempts per trial. Moreover, the
decreasing speed of this curve can also show how quickly
the agent mastered �nding all solutions.

� Percentage of Found SolutionThis curve shows how
many solutions the agent found within a trial,e.g., if the
agent found all the 3 solutions (for a 4-lever task), this
value will be1 for this trial. This plot also shows how well



the agent mastered �nd all solutions.

� Averaged Trial Reward This curve shows the averaged
reward in a trial (reward sum divided by the number of
attempts). Since the reward strategies are varied in our
experiments, this value cannot be a direct criterion to com-
pare the performance of various experimental settings.

In Table 5-10, we list theAveraged Attempt Amountfor all
the experiments. This value is averaged by the last30trails to
show the �nal performance over all the lever con�gurations.
As mentioned above, the fewer the attempts, the better the
performance.

E.3 Baseline Experiments

In baseline experiments, we want to evaluate the agents' per-
formance on a single causal schema. The agent needs to do
several trials successively. Among these trials, the causal
schema is �xed, while the lever con�gurations and observa-
tional solutions are varied (structurally, the solutions remain
the same). The goal in each trial is to �nd all the solutions
using as few attempts as possible. We evaluate all the 5 al-
gorithms (DQN, DQN-PE, A2C, TRPO and PPO) on four
casual schemas, and the results are shown in Table 5-8 and
Figure 2-5.

In general, 3-lever tasks are easier than 4-lever tasks, be-
cause there are more solutions to �nd in the latter case. Specif-
ically, for rewards that do not encourage �nding multiple so-
lutions, such as Reward B and N, it is quite dif�cult for agents
to �nd all the solutions, and agents are frequently biased to
one speci�c solution. In other words, agentsmemorizea sin-
gle solution instead of learning the abstract, multi-solution
causal schema. As for the reward strategies that encourage
�nding multiple solutions, Reward U is the best for most of
the agents. In addition, for some importance-sampling based
policy gradient methods (PPO/TRPO), an extra penalty (Re-
ward N) can slightly improve the stability and �nal results.

In the Reward N+M and Reward N+M+P strategies, we
introduce some reward shaping techniques, including reward
multiplier and partial sequence bonus, to mitigate the sparse
reward problem. However, the results are worse and more
unstable. We posit that this may be caused by the positive
reward for non-unique solutions. Although the agents are
encouraged to �nd new solutions using the multiplied reward,
nothing prevents agents from being biased towards a speci�c
solution, yielding a sub-optimal policy. To eliminate this, we
may need to adjust the learning rate dynamically as solutions
are found. Thus selecting hyper-parameters for the last 2
reward strategies is challenging, and the results are dif�cult
to match expectations.

Another interesting result is the performance of value-
based methods (DQN, DQN-PE). For all casual schemas and
reward strategies, these methods do not perform well under
any of our experiments. Since the lever settings vary between
trials, it extremely dif�cult for the agent to build a universal
value function based on discrete state-action input (Edmonds
et al. 2018). The casual schema remains the same, but the
value function learned is not directly based on the abstract
casual state. The RL agents examined do not appear able to
construct a representation capable of inferring the connection

between the explicit discrete state and the abstract casual
state.

E.4 Transfer Experiments

In transfer experiments, we �rst train our agents in a 3-lever
task and them to a 4-lever task. We perform quantitative
evaluations on the target 4-lever task for all the transferred
models. Additionally, we also compare them with the models
that trained on a 4-lever task from scratch (i.e.; baseline
experiments). If the agents form useful abstract structural
representations of tasks, we expect them to complete the 4-
lever task faster than training from scratch. All 5 algorithms
and 6 reward strategies are considered. The results are listed
in Table 9-10 and Figure 6-8.

Reward strategies that were not effective in baseline ex-
periments were also not effective in transfer experiments,
as expected. Baseline experiments showed that policy-based
methods (A2C, PPO, TRPO) with explicit encouragement to
multi-solution performed better; these agents mastered most
of the solutions (Table 7-8). As we mentioned above, if an
agent is able to establish a concept to the corresponding ca-
sual schema, it should have comparable transfer performance
regarding the performance of agent training on a 4-lever task
from scratch, and it is also expected to converge faster. To ver-
ify this, we can make a comparisons between Table 7-8 and
Table 9-10. However, for both CC4 and CE4 casual schemas,
there is a signi�cant gap between transfer performance and
training performance. Even under the most effective reward
strategies (Reward U, Reward U+N, and Reward N+M), the
agents �nd it hard to match the corresponding training per-
formance, indicating negative transfer.

E.5 Empirical results of MAML

Here we separately present the empirical results of MAML
since it is a meta-learning approach that does not comes from
the same category as other transfer learning methods (see
Table 1). We conduct experiments on MAML with only the
reward strategy ofunique solutions(Reward U) as this strat-
egy overall provides the best performances. All the numerical
results are presented in Table 3 and Table 4 for CC4 and CE4
scenarios respectively, while the learning curves can be found
in Table 8.

As the meta optimizer we use in MAML is TRPO (Schul-
man et al. 2015), we compare the adaption results with TRPO
in transfer experiments on CC4/CE4, which can be found in
the second row of Figure 6 and Figure 7. The results indicate
that during few-shot adaption phase, MAML overall outper-
forms than �ne-tuning policy previously learned on 3-lever
task with TRPO, which demonstrates that the transferring,
or adaption do bene�t from meta-learning from both the 3
and 4-lever tasks. However, when comparing with the oracle
baseline results that directly training on 4-lever tasks (see the
second row of Figure 4 and Figure 5), there is still a signi�-
cant performance gap, which indicates that the MAML agent
cannot master the target tasks well. Namely, being similar as
all the �ne-tuning methods, meta-learning on the previous
task with same causal schema can improve neither the perfor-
mances of subsequent policy learning on target task nor the
convergence properties but misleads the policy learning even



with similar causal schema. This demonstrates that the state-
of-the-art meta-learning approach also may not be able to
establish a useful concept toward the causal schemas among
the tasks it encounters during the meta-learning phase.
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Table 3: Summary of RL results. Averaged Attempt Amount (Averaged by last 30 trials) for CC4.

DQN DQN-PE A2C TRPO PPO MAML
CC4, baseline 696.47 690.93 27.23 6.59 8.75 610.8
CC4, transfer 698.52 699.92 30.27 658.45 77.46 510.8

Table 4: Summary of RL results. Averaged Attempt Amount (Averaged by last 30 trials) for CE4.

DQN DQN-PE A2C TRPO PPO MAML
CE4, baseline 697.64 700.00 30.05 36.15 121.14 363.9
CE4, transfer 694.01 697.56 657.16 510.60 700.00 401.9

Table 5: Averaged Attempt Amount (Averaged by last 30 trials) for CC3.

DQN DQN-PE A2C TRPO PPO
Reward B 687.80 693.35 538.01 674.94 690.87
Reward U 691.59 686.67 12.36 3.79 4.54

Reward B+N 674.93 692.74 610.29 691.33 700.00
Reward U+N 673.71 691.97 12.93 3.48 4.05
Reward N+M 669.58 692.86 69.39 5.61 283.34

Reward N+M+P 673.13 684.25 19.47 40.38 422.75

Table 6: Averaged Attempt Amount (Averaged by last 30 trials) for CE3.

DQN DQN-PE A2C TRPO PPO
Reward B 689.24 686.97 568.61 666.95560.89
Reward U 676.01 685.63 14.97 3.56 4.23

Reward B+N 684.61 680.53 489.33 660.83 630.46
Reward U+N 684.05 684.09 13.97 3.56 11.00
Reward N+M 694.21 684.50 14.45 3.68 143.81

Reward N+M+P 691.77 691.62 15.60 3.71 560.75

Table 7: Averaged Attempt Amount (Averaged by last 30 trials) for CC4.

DQN DQN-PE A2C TRPO PPO
Reward B 700.00 699.86 700.00 700.00 700.00
Reward U 696.47 690.93 27.23 6.59 8.75

Reward B+N 672.02 699.38 700.00 700.00 700.00
Reward U+N 688.61 700.00 67.69 283.51 7.09
Reward N+M 692.19 700.00 326.39 6.43 562.75

Reward N+M+P 686.15 697.21 490.77173.35 589.14

Table 8: Averaged Attempt Amount (Averaged by last 30 trials) for CE4.

DQN DQN-PE A2C TRPO PPO
Reward B 698.44 699.14 700.00667.14 700.00
Reward U 697.64 700.00 30.05 36.15 121.14

Reward B+N 700.00 698.72 700.00679.21 700.00
Reward U+N 700.00 693.59 35.25 247.35 415.17
Reward N+M 700.00 693.61 45.39 81.79 267.13

Reward N+M+P 698.47 691.17 34.06 64.90 367.52



Table 9: Averaged Attempt Amount (Averaged by last 30 trials) for CC3-CC4.

DQN DQN-PE A2C TRPO PPO
Reward B 698.61 699.12 700.00 700.00 700.00
Reward U 699.87 699.85 24.68 644.59 85.17

Reward B+N 686.29 698.27 700.00 700.00 700.00
Reward U+N 684.68 700.00 60.99 700.00 7.32
Reward N+M 674.48 700.00 372.51 700.00 683.41

Reward N+M+P 686.89 698.09 59.55 700.00 576.51

Table 10: Averaged Attempt Amount (Averaged by last 30 trials) for CE3-CE4.

DQN DQN-PE A2C TRPO PPO
Reward B 687.13 700.00 700.00 700.00 700.00
Reward U 693.39 699.67 616.62483.27 700.00

Reward B+N 698.43 698.86 700.00 700.00 700.00
Reward U+N 700.00 694.74 156.80 700.00 638.09
Reward N+M 698.55 700.00 326.29 700.00 700.00

Reward N+M+P 693.49 700.00 510.08 700.00 700.00
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