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ABSTRACT

Predicting physical dynamics from visual data remains a fundamental challenge
in Artificial Intelligence (Al), as it requires both accurate scene understanding
and robust physics reasoning. While recent video generation models achieve im-
pressive visual quality, they lack explicit physics modeling and frequently vio-
late fundamental laws like gravity and object permanence. Existing approaches
combining 3D Gaussian splatting with traditional physics engines achieve physi-
cal consistency but suffer from prohibitive computational costs and struggle with
complex real-world multi-object interactions. The key challenge lies in devel-
oping a unified framework that learns physics-grounded representations directly
from visual observations while maintaining computational efficiency and gener-
alization capability. Here we introduce Neural Gaussian Force Field (NGFF),
an end-to-end neural framework that learns explicit force fields from 3D Gaus-
sian representations to generate interactive, physically realistic 4D videos from
multi-view RGB inputs, achieving two orders of magnitude speedup over prior
Gaussian simulators. Through explicit force field modeling, NGFF demonstrates
superior spatial, temporal, and compositional generalization compared to state-of-
the-art (SOTA) methods, including Veo3 and NVIDIA Cosmos, while enabling ro-
bust sim-to-real transfer. Comprehensive evaluation on our GSCollision dataset—
640k rendered physical videos (~4TB) spanning diverse materials and complex
multi-object interactions—validates NGFF’s effectiveness across challenging sce-
narios. Our results demonstrate that NGFF provides an effective bridge between
visual perception and physical understanding, advancing video prediction toward
physics-grounded world models with interactive capabilities.

1 INTRODUCTION

From infancy, humans develop robust intuitive physics that enables rapid inference of object prop-
erties and dynamics from visual input (

, ). This remarkable ablllty allows us to predrct how objects w1ll move, col-
lide, and deform in complex 3D environments using our internal “physics engine” ( ,

7 9 7 b ’ 9 7 b )'
Current Al systems fall far short of this capability ( , ; , ). While
recent video generation models produce v1sually impressive results and show promise as “world
simulators” ( s ), they funda-

mentally lack physwal understandlng These models frequently violate basic principles like object
permanence solidity, and grav1ty, even after trarnmg on millions of videos ( ,

s ). This limitation severely
constrarns AI agents’ ablhty to mteract effectrvely with real-world physical environments.

Achlevrng human-level physical reasoning in Al faces two fundamental challenges. First, learn-
ing effective object representations from RGB 1nputs Most physics prediction methods rely
on precise object-centric data ( ; , ) or im-
plicit volumetric encodings that are difficult to ground in physrcs ( , ; ,
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Figure 1: Capabilities of NGFF. NGFF is a physics-grounded video prediction framework that unifies percep-
tion and dynamics to model complex interactions and synthesize 4D videos. Built on Gaussian representations
and force fields, it enables novel-view and novel-background synthesis as well as force-prompted interactive
generation (Section 4.3). Moreover, NGFF achieves strong spatial and temporal generalization in dynamic pre-
diction (Section 4.2) and can be effectively adapted to real-world scenarios (Section 4.4).

2023b). Particle-based approaches (Li et al., 2019; Allen et al., 2023b; Whitney et al., 2024) require
additional pretrained renderers for multi-view consistency, limiting scalability to complex scenes.
Second, learning generalizable physical dynamics. Large video models tend to overfit superficial
visual features and retrieve training patterns rather than learning robust physical principles (Kang
et al., 2025; Li et al.,, 2022; Shiri et al., 2024). Recent Gaussian splatting methods for physics (Xie
etal., 2024; Lin et al., 2025b; Jiang et al., 2025a; Zhang et al., 2025) show promise but struggle with
scalability and generalization due to predefined simulators and intractable parameters.

We introduce Neural Gaussian Force Field (NGFF), a physics-grounded neural framework that ad-
dresses these challenges through explicit force field modeling. NGFF encodes multi-view RGB
images into 3D Gaussian representations with object semantics via a feed-forward geometry trans-
former (Wang et al., 2025a;b). A neural operator then predicts object-centric force fields, which are
integrated through an Ordinary Differential Equation (ODE) solver to simulate realistic dynamics.
The framework renders the evolved Gaussians to generate physically consistent multi-view videos.

NGFF demonstrates four key capabilities (Figure 1): enhanced Out-of-Distribution (OOD) gen-
eralization through explicit force field reasoning that enables robust prediction across complex in-
teractions; interactive generation via force-prompted control of learned dynamics; efficient multi-
view synthesis with background-agnostic video generation from object-aware 3D Gaussians; and
sim-to-real transfer through neural field representations that generalize to real-world scenarios.

To support training and evaluation, we construct GSCollision, a comprehensive 4D Gaussian dataset
featuring diverse rigid and soft body physics across phenomena including falling, collision, rotation,
sliding, and containment. The dataset incorporates real-world backgrounds from WildRGBD (Xia
et al., 2024) to enhance visual complexity and realism, totaling 640k rendered videos (~4TB).

We evaluate NGFF across dynamic prediction, video generation, and real-world transfer scenarios.
Results demonstrate that our method generates high-quality predictive videos while achieving phys-
ically plausible simulations in unseen scenarios. NGFF surpasses SOTA particle-based methods
like Pointformer (Wu et al., 2024b) and video generation models including Veo3 (DeepMind, 2025),
NVIDIA Cosmos (NVIDIA et al., 2025), and PhysGen3D (Chen et al., 2025). Our work bridges the
gap in Gaussian-based simulation (Zhang et al., 2025; Jiang et al., 2025a; Zhobro et al., 2025) by
simultaneously capturing high visual complexity and complex multi-object physical interactions.

2 RELATED WORK

Physical reasoning and visual dynamic prediction are fundamental challenges in developing Al
systems with human-like intuitive physics. Evaluation frameworks based on the Violation-of-
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Figure 2: Overall framework of NGFF. Given unposed RGB inputs, our approach first reconstructs the scene
into object-aware 3D Gaussians through feed-forward prediction, followed by segmentation and refinement to
handle occlusions and noise. The refined Gaussians are encoded into high-dimensional features and processed
by a DeepONet-based neural operator to predict object-centric force fields. These force fields are integrated
through ODE solvers to simulate realistic dynamics, enabling iterative prediction and rendering of future scene
states with maintained physical consistency.

Expectation (VoE) paradigm (Piloto et al., 2022; Dai et al., 2023; Bakhtin et al., 2019; Allen et al.,
2020; Bear et al., 2021; Li et al., 2024) have driven progress in neural dynamics prediction, where
Graph Neural Networks (GNN)-based approaches typically employ mesh, SDF, spring-mass, or
particle-grid representations (S‘dnche/ Gonzalez et al., 2020; Bear et al., 2021; Allen et al., 2023a;
Rubanova et al., 2024; Jiang et al., 2025a; Zhang et rll , 2025). While these methods succeed in
simulating diverse materials, they struggle with generalrzation to complex, out-of-distribution in-
teractions due to reliance on predefined physical models and structured inputs. Parallel efforts in
differentiable physics simulators, particularly MPM-based Gaussian formulations (Xie et al., 2024;
Linetal., 2025b; Chen et al., 2025), achieve high physical fidelity but suffer from prohibitive compu-
tational costs that limit real-world scalability. Scene representations have evolved from point clouds
and NeRFs (Shi et al., 2024; Whitney et al., 2024; Driess et al., 2023; Xue et al., 2023a; Li et al.,
2023) to 3D Gaussian Splatting (Kerbl et ul., 2023), with recent advances enabling raprd reconstruc-
tion through feed-forward prediction (Wang et al., 2025a; Jiang et al., 2025b; Wang et al., 2025b;
Zhobro et al., 2025). Our work unifies feed-forward Gaussian-based scene representations with neu-
ral dynamics modeling to enable generalizable physical reasoning across multi-object interactions,
learning physics directly from visual observations while maintaining computational efficiency and
generalization capability. Detailed related work is provided in Section D.

3 METHOD

We formulate 4D video prediction as learning Neural Force Fields (NFFs) that govern the temporal
evolution of 3D Gaussian scene representations. Our approach consists of two complementary com-
ponents: feed-forward reconstruction that converts multi-view RGB observations into object-aware
3D Gaussians, and neural dynamics prediction that simulates realistic physics through learned force
fields integrated via ODE solvers (Figure 2). This unified framework enables both accurate scene
reconstruction and physically grounded temporal prediction while maintaining computational effi-
ciency for real-world applications.

3.1 PROBLEM FORMULATION

Consider a dynamic scene observed through N unposed RGB images Zo = {Iy(pi) € RIZ*W>*3 |
k =1,..., N} captured from different viewpoints p;, € RS at the initial time step. Our objective is
to predict the scene’s temporal evolution, generating future observations I;(p) at arbitrary time steps
t € T and camera poses p € RS that respect both visual consistency and physical constraints.

We represent scenes using M 3D Gaussians Gy = {go;}}., that encode both geometric and seman-
tic properties extracted from initial observations Zy. The core challenge lies in learning a neural
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dynamics model fy that predicts physically plausible state transitions G;1 = fy(G;) while enabling
efficient rendering through Gaussian splatting I, , = Render(G,, ).

Our learning framework optimizes dynamics prediction through the objective mingy E(Qt7 G:), where

G, is the predicted Gaussian state at time ¢ and £ enforces physical consistency in the predicted
Gaussian trajectories.

3.2 THE NEURAL GAUSSIAN FORCE FIELD (NGFF) FRAMEWORK

3.2.1 FEED-FORWARD 3D RECONSTRUCTION

Geometric and appearance reconstruction We build upon proven transformer-based architec-
tures ( , ;b) for robust scene reconstruction from unposed multi-view images. Input
images are first tokenized using DINOv2 ( , ), then processed through an L-layer
Alternating-Attention Transformer that captures global geometric relationships across all N view-
points. Three specialized decoder heads predict: (i) camera poses p and (ii) Gaussian centers £ via
pixel-shuffling decoders ( , ), and (iii) Gaussian attributes («, r, s, ¢) through convolu-
tional upsampling with RGB shortcuts ( , ) to preserve fine-grained appearance details.

Object-centric reconstruction Physics simulation requires decomposing scenes into distinct in-
teracting objects. We leverage SAM2 ( , ) to generate pixel-wise instance masks,
which are back-projected onto reconstructed Gaussians through majority voting to partition G into
K object groups G, = {g € G | label(g) = k}. To address occlusions and invisible parts from in-
puts, we refine object representations using DiffSplat ( , ) with Sim(3) pose estimation
to enhance topological completeness (details in Section B.2). In refinement, we choose single-view
instead of multi-view images as input since it works better for final 3D generation.

3.2.2 ODE-BASED NEURAL DYNAMICS SIMULATOR

Our dynamics model centers on learning force fields—vector functions F(+) that predict forces act-
ing on objects based on their current states. This physics-grounded approach enables unified mod-
eling of rigid and soft body interactions while achieving robust generalization to unseen scenarios
through explicit force field modeling.

Force field prediction The core of our framework leverages the physical principle of force
fields—vector fields F(-) that determine forces F(z9(t)) acting on query objects ¢ based on their
states z?(t) at time ¢. We represent each object’s state as z%(t) = {h?,s?(t),$%(t)}, encoding: (1)
semantic features h?: object-level features extracted from Gaussian centers via PointNet ( ,

), (2) zeroth-order states s9(¢): local point cloud x(t) € RM>*3_ center of mass c(t) € R?,
and orientation (Euler angles) 8(t) € R3, and (3) first-order states $9(¢): local point cloud velocity

x(t) e RM>3 velocity of center of mass ¢() € R?, and angular velocity 8(t) € R3.
For scenes with K interacting objects, we model the global transformation force field F&'°*!(.) e

RS—encompassing both translational and rotational components—using a neural operator over a
relational graph N = (V, E), where V = {z°(¢), ...,z ~1(¢)} denotes object nodes and F encodes

physical contacts. Inspired by neural operator learning ( , ) and relational inductive
biases ( s ), we define:
FEo0l(29(2)), FM(29(8) = Y W (f(2' (1) © fo(2"(t))) + b, (1)
ieN (q)

where V(¢) denotes neighboring objects in contact with g, f,, and f, are neural encoders with learn-
able parameters, O represents element-wise product, and projection matrix W e RiaenXdioce yyith
bias b € R% map hidden features to force vectors. This formulation captures diverse interactions,
including contact, sliding, and gravity.

To model local deformations in soft bodies, we introduce neural network ® that predicts point-wise
local stress fields F'°?!(.) € RM*3 based on a Contact Area Mask (CAM) highlighting contact
regions and F'3 describing the force distribution on an object:

Flocal(zq(t)) - P (Flalent(zq(t))’ CAM’Xq(t),)'(q(t)) . 2)
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The unified force field combines both components: F(z4(t)) = (Flocal Felobal),

F(Zq(t)) _ (Flocal’ Fglobal) ) (3)

Trajectory decoding via ODE integration To recover continuous and physically plausible trajec-
tories, we integrate learned force fields using second-order ODE solvers ( , ). Object
trajectories are computed as:

z?(t) = ODESolve (z(0), F,0,¢t), 4)

s(t) =s(0) + f

t

s(t)dt,  s(t) = 3(0) +f F(z9(1)) dt. )
0 0

This formulation provides a fully differentiable bridge between NFF predictions and physical dy-
namics simulation.

3.2.3 TRAINING STRATEGY

Our training employs a two-stage approach that leverages both real-world visual data and physics
simulation ground truth. The feed-forward reconstruction module initializes with pretrained 73
parameters, where the feature encoder, point head, and camera head remain frozen while the splatter
head is fine-tuned on WildRGBD using combined RGB and geometric consistency losses to align
predicted and rendered depth maps. The neural dynamics simulator trains separately on synthetic
Material Point Method (MPM) simulation data, optimizing Mean Squared Error (MSE) loss between
predicted Gaussian configurations and motion trajectories against ground-truth simulations. This
decoupled strategy enables effective utilization of both domains while maintaining training stability.

3.3 CAPABILITIES OF THE NEURAL GAUSSIAN FORCE FIELD (NGFF)

Dynamic prediction as operator learning NGFF formulates dynamic prediction as neural op-
erator learning over explicit force fields, providing a unified framework for modeling both rigid
and deformable objects within a shared representational space. By employing neural operators on
relational graphs, our approach naturally captures complex physical phenomena including contact
interactions, collision dynamics, and material deformation. This operator-based formulation en-
ables robust scalability to multi-body systems while achieving strong generalization across spatial
configurations, temporal horizons, and compositional variations in object types and arrangements.

Video generation as efficient rendering of physical trajectories Our framework bridges per-
ception and simulation by combining feed-forward 3D Gaussian reconstruction with learned force
field dynamics. The resulting system generates videos through differentiable Gaussian splatting that
renders predicted trajectories with reasonable photorealistic quality and good physical consistency.
This unified approach naturally supports flexible viewpoint synthesis, contextual scene variations,
and interactive interventions, enabling applications ranging from novel view synthesis to what-if
scenario exploration while maintaining computational efficiency compared to traditional physics
simulators.

Real-world transfer The modular design of NGFF facilitates effective sim-to-real transfer
through two key mechanisms. First, 3D Gaussians provide a disentangled interface that abstracts
noisy visual inputs into clean geometric representations suitable for physics modeling. Second,
NFF operators learn robust physical relationships that generalize beyond synthetic training data.
This combination enables the framework to adapt learned dynamics to real-world RGB observations
while preserving physical consistency, bridging the gap between controlled simulation environments
and complex real-world scenarios.

4 EXPERIMENTS

4.1 DATASET

We introduce GSCollision, a comprehensive 3D Gaussian-splats physical reasoning dataset that ad-
vances beyond existing benchmarks ( , ; , ; , ;
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Figure 3: GSCollision dataset. (a) Distribution of 10 representative objects characterized by density and
material hardness (Young’s modulus, log scale). The parameter space spans from soft, lightweight materials
(e.g., cloth, rope, pillow) in the lower-left region to rigid, dense objects (e.g., bowl, phone) in the upper-right,
providing comprehensive coverage of everyday material properties. (b) Dataset composition totaling 4.25 TB
across 3,200 scenes and 640k videos. The pie chart shows storage distribution among training and test splits,
multi-view initial scene captures, and auxiliary data files. (c) Representative frame gallery across evaluation
scenarios: training sequences, longer temporal rollouts, compositional generalization, novel viewpoints, and

, demonstrating the diversity of physical interactions and visual contexts in our benchmark.

et al., 2024) by providing physics-grounded 3D representations suitable for both perception and
dynamics modeling. Constructed using MPM simulators (Xie et al., 2024), our dataset captures re-
alistic behaviors of both rigid and deformable bodies while maintaining the computational efficiency
of Gaussian-based representations for fast, differentiable rendering.

The dataset features 10 everyday objects with diverse material properties—ranging from soft items
like pillows and ropes to rigid objects such as balls and phones—that exhibit distinct physical be-
haviors under various interaction scenarios. Through systematic sampling of object compositions
and spatial configurations within a 3D environment, we generate 3,200 physically realistic scenar-
ios encompassing object—object and object—ground interactions across diverse dynamics including
falling, collisions, rotation, sliding, and containment.

Our evaluation protocol introduces systematic distributional shifts to assess generalization capabili-
ties. The training set contains 2,700 three-object scenes, while the test set comprises 500 scenarios
with deliberate complexity variations: 300 unseen three-object configurations for spatial generaliza-
tion, 100 four-object scenes for compositional scaling, and 100 six-object scenes for complex multi-
body reasoning. Each sequence spans 100 simulation steps (approximately two seconds), capturing
rich temporal dynamics across scenarios such as stacked towers, container-based interactions, and
collision-driven behaviors. Dataset statistics and analysis are provided in Figure 3.

4.2 DYNAMIC PREDICTION

We evaluate NGFF’s physics modeling capabilities across four critical generalization dimensions
that test fundamental aspects of learned dynamics. Spatial generalization assesses force field pre-
dictions at unseen object positions, requiring accurate spatial extrapolation beyond training configu-
rations. Temporal generalization evaluates long-term stability and accuracy over extended rollouts
that exceed training sequence lengths. Compositional generalization (I_ake & Baroni, 2023) probes
reasoning about novel object combinations and scaling to larger multi-body systems (4—6 objects)
not encountered during training. External force generalization tests adaptability under previously
unseen perturbations and intervention scenarios.

We benchmark against established SOTA approaches, including particle-based methods (GCN (Kipf
& Welling, 2017), Pointformer (Wu et al., 2024b)) and physics-engine baselines using MPM sim-
ulators with Vision Language Models (VLM)-estimated parameters (Chen et al., 2025). Complete
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Table 1: Dynamic prediction performance across generalization scenarios. We evaluate models using four
key metrics: Root Mean Squared Error (RMSE) between predicted and ground-truth trajectories for positional
accuracy, Final Position Error (FPE) for long-term stability, correlation coefficient R for temporal consistency,
and average inference time over 100 simulation steps for computational efficiency. Arrows indicate whether
higher (1) or lower () values represent better performance. The ablation study NGFF w/o deform. demon-

strates our framework’s performance when soft body deformation modeling is disabled, isolating the contribu-
tion of local stress field prediction.

Model Spatial Temporal Compositional Time

RMSE | FPE| R RMSE| FPE| R{ RMSE| FPE| R{ &V
VLM-MPM 0.306  0.774 0.299 0.328 0.901 0.300 0.358 0.904 0.305 39.29
GCN 0.134 0479 0406 0.174 0.590 0.400 0.145 0.509 0.347 0.346
Pointformer 0.096 0.394 0.623 0.129 0.537 0.604 0.162 0.594 0.434 0.183
NGFF w/o deform. 0.110 0.459 0.595 0.144 0.600 0.578 0.131 0.546 0.515 0.303
NGFF 0.082 0.326 0.661 0.107 0.419 0.652 0.104 0.409 0.571 0.363

GT

NGFF

Pointformer VLM-MPM  GCN

Figure 4: Qualitative comparison of dynamic prediction methods. Temporal progression of multi-object
scenes demonstrating NGFF’s superior trajectory prediction compared to baseline approaches. Each row shows
predictions from a different method (NGFF, GCN, Pointformer, Traditional MPM) across identical initial con-
ditions, with time advancing from left to right. The scenarios feature complex, rigid-soft body interactions,
including deformable objects (pillows, ropes) interacting with rigid bodies (balls, containers) under gravita-
tional and contact forces. NGFF maintains physically consistent trajectories and realistic deformation patterns
throughout extended rollouts, while baseline methods exhibit drift, unrealistic dynamics, or computational in-
stability. Additional dynamic prediction visualizations are provided in Section F.1.

Cosmos  NGFF

Veo3

Figure 5: Interactive generation under external perturbations. Red arrows indicate applied forces. Left:
upward force on fallen pillow; Right: leftward force on cloth affecting ball motion. NGFF produces physically
consistent responses to interventions, while baseline methods (Cosmos, Veo3) generate unrealistic dynamics
that violate physical constraints. Baseline prompts: Cosmos—“‘modify the pillow...to show a significant, sud-
den external force stretching it upward into the air, with interactions with panda and miku”; Veo3—"“modify
the clothing...to show a significant, sudden external force stretching it leftward.”

baseline descriptions and evaluation metrics are detailed in Sections C.1 and C.2. As demonstrated in
Table 1 and Figure 4, NGFF consistently outperforms all baselines across generalization dimensions,
achieving particularly significant improvements in long-term dynamics and multi-object reasoning
scenarios. Notably, our approach delivers approximately two orders of magnitude faster inference



Published as a conference paper at ICLR 2026

compared to traditional MPM simulators while maintaining superior accuracy, highlighting the com-
putational advantages of learned force field representations.

4.3 VIDEO GENERATION

From a video generation perspective, we do not assume ground-truth 3D Gaussians of the initial
scenes but acquire them from the RGB images. We evaluate across four key dimensions that capture
essential requirements for robust physics-aware video prediction. Compositional generation tests
adaptation to novel object arrangements and scaling to six-object scenes beyond training complex-
ity. Novel-view generation assesses spatiotemporal consistency from unseen camera viewpoints,
requiring disentangled dynamics and appearance modeling. Novel-background generation eval-
uates robustness to new visual contexts while preserving physical plausibility. Interactive gener-
ation probes causal understanding through external perturbations, distinguishing learned physics
from trajectory memorization.

Our evaluation employs both automated

VLM assessment and human annota- Table 2: Video generation performance across generaliza-

. . . . tion scenarios. Performance metrics (higher is better) eval-
tion, measuring Physical Realism (PhysR) iy

hvsical d Ph Reali vated on compositional (Comp.), novel-background (NB),
(physica ac.curacy) an oto CAlISIM. 1 yvel-view (NV), and comprehensive (All) splits testing dif-
(PhthR) (visual quality) as .detalled. N ferent aspects of generalization capability. The comprehen-
S'ectlon C2. We compare against lead}ng sive split combines all three generalization challenges. Note
video generation approaches, including that Cosmos performs standard novel-view generalization us-
diffusion-based models (NVIDIA Cosmos ing existing viewpoints, while NGFF tackles the more chal-

( , ), Google Veo3 lenging novel-view synthesis task requiring generation from
( , )) and physics-engine entirely unseen camera perspectives.
methods (PhysGen3D ( ’ ) VLM Eval. Human Eval.

Results in Figure 6 and Table 2 demon- ~ Model Split

strate that NGFF significantly outperforms

PhysR PhotoR PhysR PhotoR
Comp. 0.34 0.42 0.29 0.43

existing methods in' physic?al accuracy Cosmos NB 026 046 030 041
across unseen scenarios, while achieving NV 039 042 026 039
competitive visual quality despite mod- All 020 032 028 0.41

est degradation from 3D reconstruction er-

o T ot Govin oy (G 0% 0% bg
resentation uniquely enables joint novel- tuned NV 049 040 063  0.62
view and novel-background generation ca- All 024 036 059 058
pabilities (see Section E). Crucially, Fig-
ure 5 illustrates our framework’s supe-
rior interactive generation: through ODE-  NGFF-V

Comp. 047 0.42 0.56 0.55
NB 0.56 0.42 0.63 0.61
NV 0.44 0.38 0.55 0.54

based force modeling, NGFF produces All 030 035 0.55 0.55
physically consistent responses to exter-

nal interventions, while competing meth- ~_ Veo3 All 029 041 053  0.64
ods fail to maintain plausibility under per-  PhysGen3D All 0.19 0.35 0.57 0.58
turbations.

4.4 REAL-WORLD EXPERIMENTS

Real-world deployment presents fundamental challenges due to sim-to-real gaps in both perception
accuracy and physical property estimation. We evaluate this transition by applying trained models
to real-world scenarios and comparing predictions against observed behaviors.

Figure 7 presents comparative results between NGFF and state-of-the-art video generation models
(Veo3, Cosmos, and Cosmos fine-tuned on GSCollision). While competing approaches produce
visually appealing outputs, they systematically fail to capture accurate gravitational effects and re-
alistic object interactions in real environments. Fine-tuning Cosmos on our synthetic data leads to
overfitting behaviors that reduce real-world reliability. In contrast, NGFF generates trajectories that
closely align with observed real-world physics, demonstrating effective transfer of learned force
field dynamics across the simulation-reality gap. Additionally, the results also demonstrate that the
model can generalize to unseen objects and their compositions.
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Figure 6: Video generation quality comparison. Temporal sequences comparing NGFF against video gen-
eration baselines across diverse scenarios. NGFF maintains coherent object shapes, physically plausible in-
teractions, and consistent backgrounds throughout generated sequences, while baseline methods exhibit shape
distortions, unrealistic dynamics, and scene inconsistencies that violate physical constraints.
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Figure 7: Real-world validation. (a) Multi-view capture setup using 10 Pocket 3 cameras recording object
dropping experiments. (b) Initial multi-view frames from real-world scenes. (c) Model comparison against
ground truth. While video generation models produce visually appealing results, they exhibit physical incon-
sistencies including object hallucination, unrealistic gravity, and incorrect collision dynamics. NGFF demon-
strates superior physical accuracy and consistency with real-world dynamics.
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This validation highlights the importance of physics-grounded representations in bridging percep-
tion and simulation for real-world applications. Detailed experimental protocols are provided in
Section C.3.

5 DISCUSSION

Predicting 4D physical dynamics from minimal observations While NGFF currently requires
multi-view inputs for reliable 3D Gaussian reconstruction, human physical reasoning often operates
from single observations or partial views. This observation-reconstruction gap represents a funda-
mental challenge for deploying physics-aware models in resource-constrained or dynamic environ-
ments. Addressing this limitation requires integrating stronger geometric and physical priors into
the reconstruction pipeline, potentially through large-scale pretraining on diverse visual-physical
datasets or by incorporating generative models that can hallucinate plausible 3D structure from
minimal visual evidence. Such advances would bring computational models closer to human-level
efficiency in physical scene understanding.
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Scaling to diverse objects and complex scenes Our current evaluation spans 10 representative
objects across rigid and soft material categories, providing a controlled testbed for physics-grounded
reasoning. However, real-world applications demand handling thousands of object types with vary-
ing material properties, articulated structures, and complex environmental interactions. Scaling
NGFF to this diversity requires fundamental advances in both data efficiency—Iearning physical
principles from limited examples—and representation learning that can generalize across material
classes and geometric configurations. Additionally, extending beyond laboratory settings to outdoor
environments with complex lighting, weather, and surface conditions presents additional challenges
for robust perception-to-physics mapping.

Interpretable physics-grounded reasoning A key advantage of NGFF over black-box video gen-
eration approaches lies in its explicit intermediate representations—3D geometries, force fields, and
object-centric states—that provide interpretable windows into the model’s reasoning process. Fu-
ture developments could leverage this interpretability for richer forms of physical understanding,
including causal counterfactual reasoning that answers “what if”” questions through systematic inter-
ventions, explicit disentanglement of latent physical properties such as mass and material stiffness,
and compositional reasoning about novel physical scenarios. These capabilities would significantly
enhance the utility of physics-aware models in scientific discovery, robotics control, and embodied
Al applications where understanding causality is as important as prediction accuracy.

The trade-off between visual quality and physics-grounding Our current focus on physical in-
teractions over complex rendering highlights an inherent trade-off between visual fidelity and phys-
ical consistency. While 2D video generation methods excel at photorealism—inherently capturing
complex lighting and shading effects—they often lack accurate physical grounding. Conversely,
3D-based prediction models ensure explicit physical dynamics but are currently limited by recon-
struction artifacts and simplified rendering. We believe that synergizing physics-grounded prediction
frameworks with recent advancements in generative reconstruction and video generation models of-
fers a promising path to mitigate these artifacts and significantly elevate visual realism in NGFF.

6 CONCLUSION

We introduce NGFF, a unified neural framework that bridges 3D perception and physics simulation
through explicit force field modeling over Gaussian representations. By combining feed-forward
3D reconstruction with learned dynamics, it generates physically consistent and visually realistic
4D videos while enabling interactive and novel view synthesis from multi-view RGB inputs.

Comprehensive evaluation demonstrates that NGFF achieves superior performance compared to
state-of-the-art video generation and physics simulation methods across spatial, temporal, and com-
positional generalization scenarios. The framework’s object-centric representation and physics-
grounded force fields enable robust transfer from synthetic training to real-world scenarios, while
maintaining computational efficiency through differentiable Gaussian splatting.

Looking forward, extending NGFF to handle minimal observation requirements, diverse object
categories, and complex environmental conditions represents promising directions for developing
general-purpose world models. Such advances could enable integrated systems that combine physi-
cal consistency with visual realism for robust prediction, causal reasoning, and interactive planning
in embodied Al applications. The explicit interpretability of our force field representations provides
a foundation for future research in causal physical reasoning and scientific discovery applications.

Reproducibility statement To facilitate reproducibility, we document the data generation process
in Section A, provide implementation details of our model in Section B, describe the setup of base-
line methods in Section C.1, outline the evaluation metrics in Section C.2, and detail the collection
and processing of real-world data in Section C.3. Both the data and code will be released.
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A DATASET CONFIGURATION

To support large-scale evaluation of physically grounded video prediction, we construct GSColli-
sion, a dataset that couples Gaussian splatting with MPM-based simulation. The pipeline described
in Section A.1 generates temporally consistent Gaussian trajectories from multi-object scenes under
controlled physics. The dataset is organized into a modular structure (Section A.2) that includes
backgrounds, object assets, scene configurations, simulated dynamics, and video recordings, pro-
viding a unified platform for reconstruction and prediction. Finally, we define systematic gener-
alization splits (Section A.3) that cover spatial, temporal, and compositional variations, enabling
rigorous testing of model robustness across diverse physical scenarios.

A.1 DATA GENERATION

To construct our dataset, we employ a hybrid pipeline that integrates Gaussian splatting with a GPU-
accelerated MPM engine implemented with Warp ( , ). First, pretrained Gaussian scene
representations are loaded from checkpoints and pre-processed by removing low-opacity kernels,
applying global rotations, and transforming particles to a normalized coordinate system. If available,
segmentation masks are used to reorder particles by object identity, enabling per-object material
assignments and stiffness parameters. Optionally, internal particle filling is performed to increase
density for more accurate simulation. We utilized Neo-Hookean elasticity as the constitutive model.
The number of particles for each object is shown in Table Al.

ball bowl can cloth duck miku panda phone pillow rope

Particles 106115 232764 70569 116188 80544 48316 56104 26571 64229 8051

Table Al: Objects and their particle counts.

The pre-processed particle states are then converted into initial conditions for the MPM solver, where
particle volumes, covariance matrices, and object-specific material parameters (e.g., Young’s modu-
lus, density, boundary conditions) are configured. The simulation domain is defined as a cubic grid.
The solver is initialized with either zero or user-specified velocities, and a box-shaped boundary
of size 2 is enforced as defined by the scene configuration. Each particle stores position, velocity,
deformation gradient, rotation, covariance, stress, mass, and density, which are dynamically updated
at each step through the standard particle—grid—particle (P2G2P) pipeline. We simulate each scene
for 100 main steps, corresponding to a total of 20,000 substeps.

During simulation, the solver advances dynamics through substeps, exporting per-frame particle
attributes including positions, covariance matrices, and rotations. These outputs are saved as frame-
wise datasets (e.g., in . h5 format), which preserve all Gaussian attributes required for differentiable
rendering. This process produces temporally consistent particle trajectories aligned with Gaussian
splatting, yielding high-fidelity dynamic sequences that couple perception and physics.

How collision are handled? In our system, collisions are handled entirely at the grid stage fol-
lowing standard practice in modern MPM frameworks. The simulation proceeds in a P2G to Grid
Update to Collision (Grid BC) to G2P pipeline. Collision detection and response are applied after
the grid momentum update and before transferring velocities back to particles.

Each collider (plane, cuboid, bounding box, etc.) registers a boundary-condition kernel. During each
step, the simulator iterates through these kernels and evaluates whether each grid node lies inside
the collider region. When a grid node is detected to be inside (or crossing) a collider, we apply
a velocity projection consistent with the collider’s physical model. These boundary conditions are
imposed directly on the grid velocity field. After enforcing the grid boundary conditions, particles
gather updated grid velocities during the G2P stage. Because particle velocities are derived from
these corrected grid velocities, particles naturally satisfy non-penetration and frictional constraints
without explicit particle-level collision detection.

A.2 DATA STRUCTURE

GSCollision is organized into several components that together provide a complete pipeline from
scene configuration to dynamic simulation:
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* backgrounds stores environment-specific backgrounds (e.g., table0, tablel). Each subdirec-
tory contains camera parameters (camera_2999.pt) and Gaussian point cloud representations
(gaussians_feedforward.ply), enabling consistent scene reconstruction and rendering.

* objects contains individual object assets. Each object (e.g., ball, pillow) includes camera
calibration data (cameras . json) and its corresponding point cloud (point_cloud), serving
as atomic units for scene composition and physical simulation.

* scene_configs provides scene-level configuration files (e.g., 3.0 . json, 3_1. json) that specify
object layouts and initialization conditions for simulation.

* scenes contains multi-object scene Gaussians grouped by index (e.g., 3.0, 3_1). Each scene
contains different object combinations (e.g., 0_panda ball_can, 300 mikumiku pillow),
representing diverse interaction setups.

* mpm stores dynamic Gaussian trajectories simulated with the MPM. Subdirectories mirror those
in scenes, allowing direct correspondence between scene definitions and their physically grounded
dynamics.

* initial contains the multi-view images of the initial scene prior to interaction, serving as the start-
ing point for temporal evolution.

* dynamic records the dynamic videos of object interactions, aligned with initial and mpm, and
used for training and evaluating video prediction models.

In summary, GSCollision integrates backgrounds, object assets, scene configurations, and both sim-
ulated (mpm) and recorded (initial, dynamic) trajectories. This structure enables systematic con-
struction of complex multi-object environments and provides a unified platform for studying scene
reconstruction, physical simulation, and dynamic prediction.

+-— backgrounds

+-- table0
| +—— camera_2999.pt
| \-- gaussians_feedforward.ply
+-—— tablel
+-— camera_2999.pt
\-—- gaussians_feedforward.ply

|

|

|

|

|

|

+-— objects

|  +—— ball

| | +-— cameras.json

| | \-— point_cloud

| \-— pillow

| +-— cameras.json

| \-- point_cloud

+-— scene_configs

| +-— 3_0.3json

| \-— 3_1.Jjson

\-- scenes

| +-—— 3.0

| | +-— 0_panda_ball_can

| | \-— 100_can_panda_phone
| \-- 3_1

| +-— 300_miku_miku_pillow
| \-— 301_cloth_can_panda
+
|
|
|
|
|
|
+
|
|
|
|
|

+-—- 3_0
| +-— 0_panda_ball_can
| \-— 100_can_panda_phone
\—— 3_1
+-— 300_miku_miku_pillow
\-— 301_cloth_can_panda
-— initial
+-— 3_0
| +-- 0_panda_ball_can
| \-— 100_can_panda_phone
\-— 3_1
+-—— 300_miku_miku_pillow
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| \-— 301_cloth_can_panda
+-— dynamic

| +-—— 3_0

| | +-— 0_panda_ball_can

| | \-— 100_can_panda_phone
| \—— 3_1

| +-— 300_miku_miku_pillow
| \-— 301_cloth_can_panda

The directory sizes of the dataset is shown in Table A2.

Table A2: Directory sizes of the GSCollision dataset. Others contain objects, config files, reconstruction
files, etc.

Directory Size (T) Percentage
dynamic 0.854 20.1%
initial 0.122 2.9%
mpm 2.300 54.1%
backgrounds  0.032 0.8%
scenes 0.061 1.4%
others 0.881 20.7%
Total 4.250 100%

A.3 GENERALIZATION SPLITS

We partition the dataset into 12 groups. Among them, groups 3_0-3_8 serve as the training set,
while group 3.9, 4 and 6 are used to test generalization. Table A3 summarizes the dataset config-
uration and evaluation splits for both dynamic prediction and video generation. The training set is
built from object triplets drawn from ten categories, across groups 3_0—3_8, with trajectories span-
ning 80 simulation steps (1.6s), rendered from 20 viewpoints and 4 backgrounds. For dynamic pre-
diction, we consider three generalization settings: spatial (novel object placements in group 3_9),
temporal (longer rollouts of 100 steps), and compeositional (novel object combinations involving
4-6 objects in groups 4 and 6). For video generation, we further define splits for compositional
(3.9, 4, 6), novel-view (5 unseen viewpoints), novel-background (held-out backgrounds), and a
comprehensive split that jointly evaluates multiple factors with trajectories extended to 100 steps
(2s). Green cells indicate aspects consistent with training, while blue cells denote novel conditions
used for testing.

Table A3: Statistics of different generalization splits. Green indicates that the training and test data share the
same configuration in certain aspects, whereas blue indicates they are different.

Objects Groups Time span Viewpoints Backgrounds
Training set 3 from 10 kinds 3.0-3.8 80step/ 1.6s 20 4
Dynamic prediction
Spatial 3 from 10 kinds 39 80 step / 1.6s / /
Temporal 3 from 10 kinds 3_.0-3_8 100 steps / 2s / /
Compositional ~ 4—6 from 10 kinds 4,6 80 step / 1.6s / /
Video generation
Compositional ~ 3-6 from 10 kinds 3.9,4,6 80 step/ 1.6s 20 4
Novel-view 3 from 10 kinds 3.0-3_8 80 step/ 1.6s 5 4
Novel-background 3 from 10 kinds 3.0-3_8 80 step/ 1.6s 20 4
Comprehensive  3-6 from 10 kinds 3.9,4,6 100 steps / 2s 5 4
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B IMPLEMENTATION DETAILS

B.1 FEED-FORWARD GAUSSIAN RECONSTRUCTION

Starting from uncalibrated RGB images, the initial step is to recover the 3D point cloud structure
of a scene. Traditional optimization-based methods, such as Structure-from-Motion and Multi-
View Stereo, necessitate capturing tens or even hundreds of views, which are often impractical
in real-world scenarios. Recently, feed-forward foundation reconstruction models (

;b) have emerged as a powerful alternative. Pretrained on massive datasets, these models
perform 3D reconstruction in a single forward pass, enabling lightning-speed scene reconstruction.
This provides the foundation for subsequent neural simulation and planning within the reconstructed
3D representations.

In our experiments, we found that the permutation-equivariant architecture of 73 achieves higher
accuracy in object registration compared to VGGT, a model based on first reference frame recon-
struction. Consequently, we selected 7> as our backbone.

Building upon the 7% model, we introduce modifications to create 73 — GS for feed-forward Gaus-
sian scene reconstruction. To achieve stronger real-world generalization, we freeze the alternating
attention encoder and the camera head of the pre-trained 73 model. We directly use the predictions
from its point head as the centers, u, for the Gaussians. Furthermore, we observed that MLP-based
pixel-shuffling is prone to creating artifacts at patch boundaries. Since convolutional operations
yield smoother results, we replaced this with a convolutional upsampling layer in the splatter head.
Specifically, we first refine the patch features from the transformer encoder with three convolutional
blocks, followed by an upsampling layer and two additional convolutional blocks to eliminate arti-
facts. We also applied a direct RGB shortcut ( , ), composed of 3 Residual CNN blocks
from the input image, to preserve high-frequency details and enhance appearance reconstruction.

We trained the splatter head of our 73 — GS model on the Wildrgbd ( s ) dataset,
which contains approximately 22,000 scenes. The training was conducted on 8 NVIDIA H100 80G
GPUs for 50 epochs with a global batch size of 24. Both mixed-precision training and gradient
checkpointing were utilized.

B.2 SINGLE-VIEW GAUSSIAN REFINEMENT

Feed-forward reconstruction models that lack a generative prior are inherently limited in handling
challenges such as incomplete observations and occlusions. This deficiency can adversely affect
the topological integrity of the object’s 3D Gaussian representation and, consequently, the fidelity
of subsequent neural simulations. To address this, we propose a pipeline that first completes the
object’s geometry using a 3D asset generation model, followed by a Sim(3) point cloud alignment
to register it within the scene.

Initially, the segmented object image is processed through a super-resolution pipeline (

) to enhance textural details. We then employ a pretrained 3D generative model, DrffSplat
( , ), to infer a complete 3D Gaussian representation of the object, conditioned on the
single input view.

The generated Gaussian asset resides in a normalized, object-centric coordinate system, which is
inconsistent with the object’s true scale and pose in the scene. To place the generated object ac-
curately, we introduce a Sim(3) registration algorithm that combines visual feature matching with
gradient-based optimization. First, we render a set of images {Z;} by orbiting the generated as-
set at multiple elevations. For each rendered image 7, we use SuperGlue ( , ) to
establish matches with the original input image Z;,,, and select the view that yields the maximum
number of 2D correspondences, denoted as Cap = {(p;, p})}L;. These 2D matches are then lifted
to 3D, Csp = {(P;, P})}¥ ., by identifying the 3D points in the respective point clouds, Py, and
Pobs, that are closest to the corresponding camera rays. For initialization, we estimate the scale
Sinit from the ratio of the point clouds’ bounding box volumes and solve for an initial 6-DoF pose
[Rinit|tinit] € SE(3) using the Kabsch algorithm within a RANSAC framework. Subsequently,
we jointly refine the similarity transformation T € Sim(3) by minimizing the Chamfer distance
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between the transformed generated point cloud and the observed point cloud via gradient descent:

(R*,t*,s%) = arg Lep(sRPgen + t, Pobs)

min
ReSO(3),teR3,seR+t

The entire registration process can be done within a few seconds.

B.3 NEURAL GAUSSIAN FORCE FIELD (NGFF)

Our framework builds upon a neural interaction—based dynamics predictor, which integrates object-
level interaction modeling, boundary constraints, and stress field prediction into a differentiable
ODE solver. The overall design couples four components: an Interaction Network (IN), a Stress
Prediction Network (StressNet), boundary and collision modules, and a neural ODE-based temporal
evolution module.

Interaction Network (IN) The IN module captures both geometric and state-dependent interac-
tions among multiple objects. Each object is first encoded using a hierarchical PointNet backbone
that extracts global geometric features from point clouds. Center of mass (CoM), orientation an-
gles, linear and angular velocities are embedded through multilayer perceptrons. Pairwise object
relations are modeled via a branch—trunk structure: branch features encode relative states between
objects, while trunk features preserve object-specific information. Their interaction is combined
through element-wise multiplication and mapped to output forces and torques. To ensure physical
consistency, the IN explicitly detects inter-object collisions and boundary contacts. Collision forces
are masked by an intersection matrix, while boundary forces are predicted by a dedicated boundary
network conditioned on both geometry and state features.

Stress prediction (StressNet) Beyond rigid-body dynamics, the model accounts for distributed
internal responses by predicting per-point stress fields. StressNet takes as input the local point
coordinates, velocities, and the aggregated forces and torques from IN and boundary interactions.
A shared MLP extracts local features, followed by a global max-pooling to capture object-level
context. These are fused and projected to pointwise stress outputs. The design enforces rotation
consistency by transforming predicted forces and stresses between global and local frames via dif-
ferentiable Euler-angle rotation matrices.

Boundary and collision modules Physical validity is further maintained through two auxiliary
functions: collision detection computes pairwise point distances between objects to construct over-
lap masks, which gate non-contact interactions; boundary detection evaluates the proximity of ob-
ject points to the simulation domain limits, producing boundary masks to trigger repulsive boundary
forces.

Temporal evolution with neural ODE To simulate motion, NGFFobj integrates the above pre-
dictors into a continuous-time dynamics system solved via the torchdiffeq ODE framework. The
system state comprises point positions, point velocities, CoM and angular states, along with stress
distributions. At each step, the IN outputs interaction forces and torques, and StressNet provides
stress derivatives, which are combined with external forces (if any) and gravity. The resulting ac-
celerations are integrated forward in time using either explicit Euler or adaptive-step solvers. This
formulation enables stable long-horizon rollout while preserving differentiability for learning-based
optimization.

Training The model is trained on 8§ NVIDIA H100 80GB GPUs for 1001 epochs for 48 hours. The
learning rate starts at 1 x 10~° and decays to a minimum of 1 x 10~7. The architecture consists of 4
layers with a hidden dimension of 200. The batch size is set to 9 per node, and each epoch involves
80 steps with a chunk size of 80. The ODE method used is Euler with a step size of 2 x 1072, and
a threshold of 5 x 10~2 for collision detection is applied during training.
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C EXPERIMENTAL SETUP

C.1 BASELINES

C.1.1 GRAPH CONVOLUTIONAL NEURAL NETWORKS (GCN)

We adopt a Graph Convolutional Network (GCN) to model dynamics. Each object is represented
by a set of keypoints, which serve as graph nodes, and edges are constructed using a radius-based
neighbor search with a threshold. The node features are obtained by concatenating the 3D position
and velocity of each keypoint.

The network consists of multiple GCNConv layers, where each layer performs message passing
to aggregate information from neighboring nodes, followed by ReLU nonlinearities. A final fully
connected layer predicts the residual update of position and velocity for each node. Prediction is
performed in an autoregressive manner: at each step, the model updates the current state with the
predicted residuals and rolls out the trajectory over multiple steps.

The GCN is trained on a single NVIDIA H100 80GB GPU with a learning rate starting at 1 x 1073,
which decays to 1 x 1074, The model consists of 4 layers, each with a hidden dimension of 128.
A batch size of 30 is used, with 80 steps per epoch, and the training runs for 500 epochs. At each
step, the model processes 3000 samples, with data processed in chunks of 80 to ensure efficient
memory usage. The dynamic model used in this setup is GCN, which is specifically designed to
handle graph-structured data and learn complex relationships.

C.1.2 POINTFORMER

Pointformer directly models interactions across all object keypoints. Each keypoint is embedded
using a positional encoding derived from its 3D coordinates, followed by a linear projection into a
high-dimensional latent space. The set of embedded keypoints from all objects is then processed by
a stack of multi-head self-attention layers, allowing each point to attend to and aggregate information
from all others in the scene.

To handle variable numbers of objects and keypoints, a padding mask is applied to prevent attention
from propagating through invalid nodes. The transformer output is normalized and projected back
into the point space via a feedforward head to predict residual updates for each keypoint’s position.
As in the GCN baseline, prediction proceeds autoregressively over multiple rollout steps, generating
a sequence of future trajectories.

Unlike GCNs, which rely on local neighborhood graphs, PointFormer captures global interactions
across all keypoints through self-attention. This enables the model to represent long-range depen-
dencies and complex multi-object dynamics, but at the cost of higher computational complexity due
to quadratic attention scaling.

The Pointformer is trained on 4 NVIDIA H100 80GB GPUs for 60 hours. The model is trained with
a learning rate starting at 5 x 10~%, decaying to a minimum of 5 x 1076, The architecture consists
of 3 layers and a hidden dimension of 128, with dropout 0.1. The batch size is set to 8 per node,
with a total of 2001 epochs, and each epoch involves 80 steps with a chunk size of 80.

C.1.3 VLM-MPM

We employ Gemini-2.5-flash to infer the Young’s modulus and density from 20 training videos. The
estimated parameters are subsequently normalized to align with the value ranges required by the
MPM simulator. The prompt used is:

For each object in the videos, estimate the object’s density in kilograms
per cubic meter and its Young’s modulus in Pa. Return an json array
of objects in JSON where each object has fields: name, density,
youngs_modulus. Do not include extra text, only valid JSON that
matches the schema. The objects you need to estimate are: {objects}.

The following simulations are identical to those employed in data generation.
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C.1.4 COSMOS-PREDICT2

Cosmos-Predict2 is a World Foundation Model trained by NVIDIA, designed to simulate and predict
the future state of the world as video. It can serve as a foundation for training physical Al systems in
digital environments. The model balances both visual quality and physics awareness and is capable
of generalizing to downstream tasks with a small amount of post-training.

We performed full-parameter fine-tuning on the Cosmos-Predict2-2B-Video2World-480P-16FPS
model. For this process, we utilized a total of 216K video clips from the GSCollision dataset, which
amounts to 17.28 million frames, each with a resolution of 448 x 448.

For text conditioning, we used the following prompt for all video clips:

A photorealistic video. Simulate the future dynamics of the foreground
objects falling from the air onto the table. The simulation should
realistically model various physical interactions, including
deformation, gravity, collisions between the objects, and their
impact with the surface. Capture the subsequent motions until the
objects come to a complete rest.

For image (video) conditioning, we randomly used 3-5 latent frames (corresponding to 9-17 actual
frames) during training. During testing, we conditioned on the first 13 frames of the video.

The training was conducted on 8 NVIDIA H100 80G GPUs. We trained for 20,000 iterations until
convergence, using an initial learning rate of 2.5 x 10~ and a global batch size of 24.

C.1.5 PHYSGEN3D

PhysGen3D transforms a single static image into an interactive, amodal 3D scene capable of simu-
lating physically plausible future outcomes. The framework first reconstructs a complete 3D world
by leveraging a suite of pretrained vision models to infer geometry, semantics, materials, and light-
ing properties from the input image. This reconstructed scene is then passed to a physics-based
simulator, which uses the MPM to generate object dynamics in response to LLM-inferred phys-
ical parameters. Finally, a physics-based rendering module seamlessly composites the simulated
dynamic objects and their corresponding shadows back into the original scene, producing a coher-
ent and controllable video. PhysGen3D enables fine-grained control over object interactions and
generates motions that adhere to physical laws.

However, the framework’s reliance on single-view reconstruction makes it susceptible to errors in
complex scenarios. The method is primarily designed for scenes with simple geometry and can
fail when dealing with heavy occlusions and multiple objects. The ill-posed nature of inferring 3D
properties from a 2D image can lead to perception failures and parameter estimation errors under
challenging situations. Besides, reliance on MPM simulators makes it slower than neural simulation
methods on modern GPUs.

C.1.6 VEO3

Veo3 is a SOTA diffusion-based video generation model developed by Google DeepMind. It can
interpret complex text prompts, capable of generating smooth and consistent dynamics for people
and objects. It avoids the uncanny or jarring artifacts common in earlier models, producing motion
that is both believable and visually pleasing.

However, during testing, we observed that while Veo3 maintains excellent temporal consistency
during non-strenuous motion, the model still frequently generates outputs that violate fundamental
Newtonian physics principles or object permanence during strenuous events, such as collisions.

C.2 EVALUATION METRICS
In this study, we adopt different metrics for evaluating NGFF. For the accuracy of the predicted

dynamics, we choose RMSE, FPE, and R as our primary metrics. For assessing the video generation
correctness, we employ PhysR and PhotoR.
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Root Mean Squared Error (RMSE) The RMSE, defined as the square root of the MSE, retains
the property of penalizing larger deviations but expresses the error in the same units as the original
data. This makes it easier to interpret in physical contexts, as it reflects the average magnitude of
prediction errors relative to true trajectories:

RMSE = (A1)

Final Position Error (FPE) The FPE evaluates the difference between the predicted and ground-
truth final positions of an object. This metric is particularly important for goal-oriented physical
reasoning, where accuracy at the endpoint is critical. By focusing on the final state, FPE comple-
ments trajectory-based metrics and ensures that models not only capture motion dynamics but also
predict the ultimate destination correctly:

FPE = |zfinal — zfinal| . (A2)

Position Change Error (PCE) The PCE measures the discrepancy between the predicted and
actual changes in position over time. This metric can be interpreted as an indicator of how accurately
the model captures the object’s velocity throughout its motion:

Pearson Correlation Coefficient (R) The R coefficient captures the linear correlation between
predicted and actual trajectories. Rather than measuring absolute error, it reflects how well the
model aligns with the overall trajectory pattern. A high value indicates strong agreement in motion
trends, while a low value suggests that the model fails to capture the underlying trajectory structure:

. S Gt-HE-2)
Vot =17 (it — 225t = 17(2 — 2)2

Given that video-generation models like Veo3 and PhysGen3D are closed-source or untrainable,
for which a direct comparison with ground truth would be inequitable, we adopted the qualitative
evaluation framework established by PhysGen3D ( , ) to quantitatively evaluate video
generation quality. This involves leveraging a Vision-Language Model, Gemini-2.5-flash to assess
two key criteria: PhysR and PhotoR.

(A4)

Physical Realism (PhysR) The PhysR measures how realistically the video follows the physi-
cal rules like collision and gravity and whether the video represents real physical properties like
elasticity and friction.

Photo Realism (PhotoR) The PhotoR measures the overall visual quality of the video, including
the visual artifacts, discontinuities, and id-inconsistency.

The prompt is as follows:

# [video inputs]

I would like you to evaluate the quality of generated videos above based
on the following criteria: physical realism and photorealism. The
evaluation will be based on 10 evenly sampled frames from each video.

Given the original image and the above instructions , please
evaluate the quality of each video on the two criteria mentioned
above. Note that: Physical Realism measures how realistically the
video follows the physical rules and whether the video represents
real physical properties like elasticity and friction. To discourage
completely stable video generation, we instruct respondents to
penalize such cases. Photorealism assesses the overall visual quality

of the video, including the presence of visual artifacts,
discontinuities, and how accurately the video replicates details of
light, shadow, texture, and materials. Please provide the following
details for each video in an json array of videos where each video
object has fields: physical_realism score, photorealism score and
content. The content should be a sentence summarizing the video,
scores should be ranging from 0-1, with 1 to be the best, round to 2
decimal places:
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Thank you for participating in our human evaluation. In this survey, you will be asked to
rate about 80 videos (about 8 to 10 minutes) based on two criteria: physical realism
and photo realism. Each score should be assigned on a scale from 1to 5, where 1
represents the lowest quality and 5 the highest.

1. Physical realism reflects how accurately the video adheres to physical laws such as
collision and gravity, and whether it conveys realistic physical properties like elasticity
and friction.

blease rate the video from 1 to 5. Higher is better
2. Photo realism assesses the overall visual quality of the video, including the
presence of visual artifacts, discontinuities, or identity inconsistencies.

(] o (o] O O

@) o o o o

Figure Al: An example of human study questionaire.
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Figure A2: Detailed distribution of human evaluation results on Physical Realism (PhysR).

Human evaluation We designed a questionnaire to conduct human evaluation on video generation
quality across different models, as illustrated in Figure A1l. A total of 61 participants were recruited
to complete an 80-page questionnaire. At the beginning, we provided a detailed explanation of
two metrics. Each page of the questionnaire contains a 2-3 second video randomly chosen from
all models and generalization splits. Participants are instructed to assess each video based on the
two dimensions above: PhysR and PhotoR. This human study design, accompanied by results from
VLMs, ensures a fair, consistent, and comprehensive evaluation. Detailed distributions of human
evaluation results can be found in Figure A2 and Figure A3

C.3 REAL WORLD ENVIRONMENTS
C.3.1 DATA COLLECTION

We collected real-world interaction sequences using a multi-view setup of ten DJI Pocket 3 cameras
arranged around a table in a standard office environment. All cameras were calibrated to share
identical intrinsic parameters, ensuring geometric consistency across views. To induce controlled
dynamics, objects were lifted and released with transparent fishing line, creating falling and collision
events while guaranteeing that each object started from a static state. In total, we recorded 40
dynamic sequences at 50 FPS and 3K resolution. The object set included a cola can, a teddy bear,
and a rubber duck, allowing us to generate diverse two-object and three-object interaction scenarios
with varying mass and material properties.
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Figure A3: Detailed distribution of human evaluation results on Photo Realism (PhotoR).

C.3.2 VIDEO PROCESSING

For each sequence, we temporally trimmed the videos from the instant of release until all objects
came to rest, typically spanning 50-60 frames. Each frame from every camera view was annotated
with axis-aligned bounding boxes, obtained semi-automatically using SAM?2 and refined by manual
correction where necessary to ensure pixel-level accuracy. Object identities were explicitly labeled
to support subsequent use in multimodal learning tasks. To enable 3D reconstruction, all frames were
synchronized across views and processed using a feed-forward pretrained Gaussian-splatting model,
with further refinement using DiffSplat (Lin et al.,, 2025a), producing multi-view-consistent 3D
Gaussian representations. This pipeline ensured both high-quality geometry recovery and consistent
object-level alignment, establishing a reliable benchmark for evaluating dynamic prediction models
under real-world conditions. See the representative recorded videos in Figure A4, Figure AS, and

Figure A6.
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Figure A4: Recorded multi-view dynamic interaction in the real world. A teddy bear is released above a
cola can and falls onto the table.
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Figure AS5: Recorded multi-view dynamic interaction in the real world. A cola can is released above a duck
and falls onto the table.
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Figure A6: Recorded multi-view dynamic interaction in the real world. A cola can is released above a duck,
collides with the teddy bear, and falls onto the table.
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D RELATED WORK

D.1 PHYSICAL REASONING

Physical reasoning is a core human ability to understand and interact w1th the physical world. Be-
sides generatlng continuous and high-fidelity videos ( , ), physical
reasoning tackles the challenges to comprehend and reason about the governrng physical dynamics
of visual scenes, representing a core capability required for Al systems to achieve human-level in-
tuitive physics abilities. This core skill encompasses two critical domains: First, it involves spatial
reasoning ( , ) from video inputs, the ability to reconstruct and understand three-
dimensional scenes, including object relationships, spatial configurations, and perspective. Second,
it requires an understanding of fundamental physical laws governing object interactions and gener-
alizing it to OOD scenarios.

Various benchmarks have been proposed to assess the physical reasoning capabilities of both hu-
mans and machines. Previous studies build datasets based on the VoE paradigm to examine agents’
understandrng of basic physical concepts ( , ; , ). Some studies extend
the passive observation paradigm to interactive environments, which requlre the agents to apply
actions to finish tasks ( ; s ). Re-
cent benchmark studies have 1nvest1gated evaluatrng the capabrhtles of VLM ( , )and
video generation models ( , ) in physical world
understanding and adherence. These efforts predomlnantly focus on evaluatrng the physical com-
monsense of foundational video generation models in open-world scenarios. The results indicate
a significant gap between the performance of current SOTA models and human capabilities (

, ). Our work builds upon the interactive physical environment
to demonstrate the reasoning capability of our model.

D.2 VISUAL DYNAMIC PREDICTION

Visual dynamic prediction, the task of predicting future frames from visual inputs, has been ad-
dressed through diverse approaches. Neural simulator-based methods commonly employ GNN as
their dynamics backbone due to their relational inductive bias. Early approaches while capable

of simulating various physical phenomena ( , ), often
fail on complex materials and physical interactions. More recent approaches inject physics inductive
bias into simulation such as mesh ( s ) or SDF ( , ) representation
for rigid bodies and spring-mass models ( , ) or particle-grid representations (

, ) for deformable objects. Despite their advancements, these methods often struggle with
complex multi-object interaction scenarios and exhibit limited generalization abilities. While our
method adopts a unified representation for different object materials and physical interactions by
predicting force fields.

In contrast, physics simulator-based methods explicitly model scene dynamics using differentiable
simulators. For example, techniques that render scenes into particles via 3D Gaussian rendering and
simulate thelr evolution with Material Point Method (MPM)-based simulators ( s ;

, ) produce realistic outcomes but rely heavily on strong physics priors
or case- specrﬁc optimization, which may not be available in intuitive physics scenarios.

Diffusion-based video generatlon models ( s ; ;

) pretrained on massive-scale videos have emerged as powerful generatrve world models. These
models demonstrate a remarkable ability to synthesize temporally coherent and visually compelling
sequences of digital frames. However, a fundamental challenge is that they struggle to produce
physically coherent frames, lacking an inherent understanding of physical laws ( ,

, ). While these models may exhibit plausible dynamic outcomes for s1mple
constrained scenarios, their grasp of physics is superficial, as they tend to retrieve trajectories from
the training data rather than adhering to consistent learned physical laws ( , ). Recent
studies have explored integrating physical principles into diffusion-based models to generate realis-
tic and controllable object dynamics. Some approaches distill physical priors from video models to
infer intrinsic object properties to drive physics simulators ( , ).
Other works treat physics as an explicit guiding signal or conditional mput for the generative pro-
cess. PhysAnimator ( , ) uses motion sketches from a preliminary physics simulation
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Table A4: Ablation results of NGFF and NGFF without deformation across different generalization set-
tings. Arrows indicate whether higher (1) or lower () values are better.

Setting Method MSE (|) RMSE () PCE(]) FPE(]) PCC (1)
Spatial NGFF w/o deform. 0.01466  0.10971  0.01386 0.45927 0.59506
pat NGFF 0.00835  0.08199  0.01165 0.32576 0.66111
Temporal NGFF w/o deform. 0.02605  0.14403  0.01421 0.59975 0.57836
P NGFF 0.01471  0.10711  0.01167 0.41933 0.65238
Compositional-4 NGFF w/o deform. 0.02092  0.13031  0.01487 0.54689 0.52474
P NGFF 0.01052  0.09533  0.01210 0.37274 0.59444
Compositional-6 NGFF w/o deform. 0.01910  0.13249  0.01527 0.54564 0.50577
P NGFF 0.01379  0.11268  0.01358 0.44583 0.54707

Table AS: Inference time for different video generation methods Times are measured on a single NVIDIA
H100 80G GPU.

Model Time
NGFF-V 37s (3 objects) / 72s (6 objects)
NGFF-V (w/o refine) 125 (3 objects) / 19s (6 objects)
Pointformer-V 37s (3 objects) / 72s (6 objects)
GCN-V 37s (3 objects) / 72s (6 objects)
PhysGen3D 400s (3 objects) / 590s (6 objects)
Cosmos-predict2-2B 20s
Veo3 11-360s (via API)
to guide a video diffusion model, while ForcePrompting ( , ) introduces forces as

a direct control signal, training a model to generate responses to user interactions.

D.3 SCENE REPRESENTATIONS FOR SIMULATION AND RENDERING

Early methods extracted geometry, such as point clouds, directly from RGB-D inputs for simulation
and planning ( , ) and trained a separate module for rendering ( , ).
Later, Neural Radiance Fields (NeRF) enables differentiable rendering and can be jointly optimized
for simulation ( , ) at the cost of degraded flexibility due to implicit
encoders. 3D Gaussian Splattmg has emerged as a powerful alternative, offering photorealistic
quality and real-time performance ( , ). The utility of 3D Gaussians extends beyond
static rendering; works like PhysGaussian ( , ) have integrated them with Newtonian
dynamics for high-quality motion synthesis. Advances in feed-forward reconstruction significantly
accelerate the reconstruction process by directly 1nferr1ng Gaussian attributes from unposed multi-
view images ( ; , ), enabling fast, end-to-end
scene creation suitable for downstream 51mulat10ns Our concurrent work 3DGSIM (

) also employs feed-forward Gausssian reconstruction and a transformer for prediction. They
primarily focus on single-object dynamics, having limited generalization to multi-object interactions
and planning capability.

E ABLATIONS AND ADDITIONAL RESULTS

In this section, we provide supplementary results to further analyze the effectiveness and efficiency
of our proposed framework. First, we report an ablation study in Table A4, which compares NGFF
against its variant without deformation modeling across different generalization settings. The re-
sults demonstrate that explicitly modeling deformation consistently improves predictive accuracy,
yielding lower errors (MSE, RMSE, PCE, and FPE) and higher correlations (PCC).

We also benchmark the inference speed of our method against alternative approaches in Table AS.
NGFF-V attains efficient inference (2.5s per sequence on a single H100 GPU), significantly outper-
forming computationally expensive physics-based simulators (e.g., PhysGen3D) while remaining
competitive with large-scale generative models (e.g., Cosmos-predict2-2B and Veo3). Together,
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these results highlight that our framework achieves a favorable balance between accuracy, realism,
and efficiency.

F ADDITIONAL VISUALIZATIONS

F.1 DYNAMIC PREDICTION

We present more visualizations of dynamic prediction in Figures A7 to A11.
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Figure A13: Video generation results from compositional split.

F.2 VIDEO GENERATION
We present additional visualizations of video generation in Figures A12 to A19. We consider monoc-

ular reconstruction results in Figure A20 and modeling object of uneven density distribution in Fig-
ure A21.
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Figure A14: Video generation results from novel-view split.
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Figure A15: Video generation results frbm novel-view spiit.
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Figure A16: Video generation results from novel-background split.
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Figure A17: Video generation results from novel-background split.
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Figure A18: Video generation results from comprehensive split.
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Figure A19: Video generation results from comprehensive split.
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Figure A20 Video generation results from monocular RGB input.

Ground truth

NGFF

Figure A21: Dynamic prediction results on non-uniform object modeling. A shaking ficus with a fixed pot.
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