Communicative Learning with Natural Gestures
for Embodied Navigation Agents with Human-in-the-Scene
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Abstract— Human-robot collaboration is an essential re-
search topic in artificial intelligence (AI), enabling researchers
to devise cognitive Al systems and affords an intuitive means
for users to interact with the robot. Of note, communication
plays a central role. To date, prior studies in embodied agent
navigation have only demonstrated that human languages
facilitate communication by instructions in natural languages.
Nevertheless, a plethora of other forms of communication
is left unexplored. In fact, human communication originated
in gestures and oftentimes is delivered through multimodal
cues, e.g., “go there” with a pointing gesture. To bridge the
gap and fill in the missing dimension of communication in
embodied agent navigation, we propose investigating the effects
of using gestures as the communicative interface instead of
verbal cues. Specifically, we develop a VR-based 3D simulation
environment, named Gesture-based THOR (Ges-THOR), based
on AI2-THOR platform. In this virtual environment, a human
player is placed in the same virtual scene and shepherds the
artificial agent using only gestures. The agent is tasked to
solve the navigation problem guided by natural gestures with
unknown semantics; we do not use any predefined gestures
due to the diversity and versatile nature of human gestures. We
argue that learning the semantics of natural gestures is mutually
beneficial to learning the navigation task—learn to communicate
and communicate to learn. In a series of experiments, we
demonstrate that human gesture cues, even without predefined
semantics, improve the object-goal navigation for an embodied
agent, outperforming various state-of-the-art methods.

I. INTRODUCTION

Human-human communication takes place in various
forms, of which gestures play a crucial role [1]. Gestures
include movements of body, head, or hands and can facilitate
the understanding of the speech or serve as emblems to
deliver messages in place of speech [2,3]. They can signif-
icantly improve the communication efficacy for information
conveyance [4].

Similarly, human-robot communication can also occur
using multimodal cues [5]. Although robots and autonomous
systems are designed to collaborate with humans who su-
pervise, instruct, or evaluate the system to perform specific
tasks, most existing communication interfaces assume that
humans communicate to an artificial agent only using natural
language, either verbally or through text. In stark contrast,
the origin of human communications is primarily rooted
in nonverbal forms [6], e.g., gestures. Therefore, providing
assistive or collaborative Al systems with nonverbal means
of communication would open up new research venues to
investigate the efficacy of alternative communication forms.
Unlike natural languages, which suffer from intermittent
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Fig. 1: Natural gestures can succinctly deliver complex semantic
meaning in a physical space. A human user can instruct a robot
or a virtual agent to complete a navigation task by simply referring
to a target location or object using gestures. The agent should infer
the user intent from the gestures.

conveyance and need continuous attention, nonverbal cues
like gestures are immediate and intuitive, hence are less vul-
nerable to interruptions. In particular, when the environment
is noisy, or the agent is listening to someone else, a user
might refer to a location using a deictic gesture, e.g., pointing
with a finger, instead of describing it with a long sentence.

To illustrate the significance of communications using
gestures, let us take Fig. 1 as an example. A human intends to
instruct the robot to navigate to the target location or object in
the scene. Previous works in embodied visual navigation with
language-based human interactions may require a lengthy
text message, such as “go to the second brown chair next to
the big white table in the living room”. In contrast, gestures
allow to express the same message in a much simpler and
more natural way, e.g. “go there,” “clean here,” or bring
it to me.” Such multimodal messages can only be correctly
interpreted in a given physical space where a human and an
agent are situated together. The meaning of a human message
must be inferred from the joint understanding of the given
scene by the agent who also understands the semantics of
human natural gestures [7, 8].

Inspired by the above crucial observation, we intend to
bring in nonverbal communication cues [1,9,10] into the
embodied agent navigation task—the most straightforward
task of an embodied Al that interacts with the environments
and other agents. Despite the progress reported for the
embodied agent on the Vision-Language Navigation (VLN)
task [11-19], we contemplate on prior arts and quest for the
following questions: Instead of using natural language, can
we replace the language grounding by gestures in a similar
setting? Can we improve the performance of navigation with



gestures incorporated? Can the learning agent acquire the
underlying semantics of gestures, even when they are not
predefined?

Specifically, we aim to use gestures to communicate with
an embodied agent to navigate in a virtual environment.
To provide gesture-based instructions for a navigation task,
the agent needs a photorealistic simulation environment, and
a human player needs to be situated in the same scene
to have joint attention [20]. To support such a co-existing
environment, we build our virtual environment Ges-THOR
with Oculus, Kinect, and Leap Motion, based on the existing
framework AI2-THOR [21].

Although human gestures have been used as a communica-
tive interface between humans and robots in robotics [22—
26], prior literature typically predefines the vocabulary of ad-
missible gestures and their definite meanings (e.g., “ok” sign
means an approval). In contrast, human gestures are diverse;
their meanings are also non-rigid and context-dependent [27].
One needs to develop a flexible system to address the vari-
ability and versatility of nearly-unlimited naturalistic human
gestures without a predefined set of recognizable gestures.
Without defining any gestures and their meanings ourselves,
we have collected demonstrations from a group of volunteers
who have diverse gesture preferences for the same message.

In our proposed framework, an agent should therefore
solve two tasks: multimodal target inference and navigation.
Inferring the meanings of human gestures and finding a path
to the target location are two major goals of the agent, which
mutually help each other, i.e. learn to communicate and
communicate to learn. Experiments reveal that our model
incorporating gestures outperforms a baseline model only
with vision for navigation, as well as models on similar
environments and tasks using different methods [28].

This paper makes four contributions: (i) By introducing
human gestures as the new communicative interface for
embodied Al learning and (ii) developing a simulation frame-
work, Ges-THOR, that supports multimodal interactions with
human users, (iii) we demonstrate that the embodied agent’s
navigation performance significantly improves after incor-
porating human gestures. (iv) We further demonstrate that
the agent can learn the underlying meanings and intents of
human gestures without predefining the associations.

1I. RELATED WORK

Language grounding:  Language grounding is crucial
for both parties involved in communication to understand
each other. Natural language, the most common modality for
human-human and human-robot communication, can realize
the grounding in various ways. For communication with
robots, language can be interpreted from instructional com-
mands to actions [29,30]. For static images or texts, it can
be either visually grounded [31, 32] or text-based [33] Q&A.
In our work, language grounding is replaced by “gesture
grounding;” we provide gestures as the new communicative
interface. The agent is tasked to learn by grounding human
gestures into a series of actions and identify target objects.

Vision-language navigation: Image captioning with
large datasets [34] and Visual Question Answering
(VQA) [31,35] has made significant progress in vision and

language understanding, which enables visually-grounded
language navigation agent to be trained. Many tasks follow-
ing the VLN framework [11,12,14-19,36-39] have been
addressed and solved using end-to-end learning models,
either in 2D world [40-42], 3D world [12,43], or even pho-
torealistic environments [15,17-19,44]. Some works have
also explored the acoustic cue in navigation, but these are not
mainly concerned with speech [45,46]. Our work is built on
the existing VLN framework but extended by incorporating
gestures as a new modality for communications.

Simulated environments: To help the research in
embodied Al learning, various simulated environments have
spurred for the community’s benefit. Those 3D environments
are created from either synthetic scenes [21,44,47-50] or
real photographs [51-54]; some of them use game engines to
enable physical interactions [21, 44, 55-57]. In this paper, we
choose AI2-THOR, which uses Unity as the physics engine,
and build the environment on it. Exiting works using AI2-
THOR for visual navigation tasks [28, 58] require either the
target visualization or its context. In this paper, we propose
a gesture-based method to eliminate the need for acquiring
additional target information.

RL for navigation:  Instead of using traditional path-
planning approaches [59] to compute a route to the goal
location, the embodied Al community has recently focused
more on end-to-end learning for training navigation policies,
especially with Reinforcement Learning (RL). Compared
with other machine learning methods, such as supervised
learning [60], RL benefits from simple reward definitions and
easy implementations. As a result, RL becomes the core of
the learning framework [13, 15,28, 52, 53, 58]. In this paper,
we choose Proximal Policy Optimization (PPO) [61] as the
RL model.

Human AI interaction: = Human-Al Interaction (HAI)
has been intensively investigated in AI, Human-Computer
Interaction, and robotics [62—-64]. For the embodied navi-
gation agents, the sprout of simulated environments makes
users communicate with the agent interactively. Most existing
frameworks achieve this goal using dialogues [14, 37,40, 65—
67]. However, as discussed, natural language is not the only
cue for multimodal communication, and current collaborative
frameworks have not yet fully explored a rich spectrum
of communicative interfaces for embodied agent navigation.
In this paper, we propose gestures as the communicative
interface between human users and the artificial agent.

Meanwhile, there is a large body of work on human
gestures as a communicative device either to humans or
robots [68,69]. Most of these approaches are based on a
predefined gesture set with fixed meanings or focus on
gesture type classification [70], pose estimation [71,72],
or both [73,74]. In contrast, we let users use any natural
gestures and demonstrate the agent can directly learn the
semantics and underlying intents of these gestures.

III. GES-THOR: A SIMULATION FRAMEWORK FOR
HUMAN-AGENT INTERACTION VIA GESTURES

We build an interactive learning framework in Unity based
on the iTHOR environment from AI2-THOR for the gesture-
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Fig. 2: Overview of the learning framework. (a) Scenes and
the (b) learning agent are built in Unity. The agent can perform
four actions: move forward, turn left, and turn right, and stop.
(c) It receives several sensory inputs, including RGBD images,
target labels, and human gestures. Unity contains (d) an external
communicator that can communicate with the (e) learning model
in PyTorch. The learning model receives states and rewards from
the communicator and sends back chosen actions.

boosted embodied AI research,
Gesture-based iTHOR environment.

namely Ges-THOR—

A. Simulation and Learning Framework

There are many existing physics-based simulation frame-
works for photorealistic indoor navigation tasks [21,44,51—
53,57]. We choose AI2-THOR specifically to build our
learning environment because it provides a diversity of rooms
and interactive features. It has been widely used for different
visual navigation tasks [28, 58]. In addition, the game engine
Unity provides the ability to deploy across platforms and
integrate third-party resources, compatible with the sensory
devices we use for this learning environment. We also use
AllenAct [75] as the codebase for our modular framework.

B. Human Gesture Sensing

The following setup immerses human players into the
virtual environment while allowing the system to capture
human gestures:

Devices: We use Oculus Rift, Kinect Sensor v2, and
Leap Motion Controller (hereinafter referred to as Oculus,
Kinect, and Leap Motion) together for gesture sensing via
pose estimation. Oculus gives the player the first-person view
in the virtual environment; hence the player sees the virtual
scene and knows where the target object is. Kinect is used to
track overall body movements. However, Kinect is incapable
of capturing fine in-hand motions. Leap Motion is brought
in to detect hand movements.

Device Arrangement: Fig. 3 illustrates the device
arrangement. During data acquisition, the human player is
asked to wear the Oculus headset, face the Kinect sensor,
and move hands in front of Leap Motion at a distance
between 30cm and 60cm. In Unity, a humanoid character (see
Fig. 3d) mirrors players’ movements in real-time, including
body composure and hand motions.

()

Fig. 3: Device arrangement. The human player wears an (c) Oculus
headset with (b) Leap Motion. (a) Kinect is placed 1.5m from the
human player and 1.5m above the ground. The screen displays (d) A
humanoid model that are mirroring the body and hand movements.

Data collection:  Ideally, learning would take place in
real-time, where a human player continuously observes an
agent’s behavior and interacts with it such that the agent
can respond to the feedback immediately. Unfortunately, this
is infeasible because the entire training process may take
hundreds of thousands of episodes. Therefore, we opt for
using pre-recorded gestures to simulate real-time interactions
between the human player and the agent as closely and
efficiently as possible. There are two types of instructional
gestures that humans can use: one is for referencing, and the
other one is for intervention. To record referencing gestures,
a volunteer is given the target object in a scene and asked
to communicate with the agent to guide the direction with
a gesture. We do not ask participants to use any specific
gestures such as pointing with a finger but encourage them to
use any gestures as if they are talking to another person. The
gesture sequence, as well as the environmental information,
is recorded as one episode in the dataset. We have over
230,000 unique episodes for training and 2,500 episodes for
validation and testing. For intervention gestures, the player
shows gestures in a rejective manner used to warn the agent
if it is moving away from the target. We recorded ten
different intervention gestures. Kinect Body and Leap Hands
can duplicate the player’s movements and save the recorded
motions as animation clips in Unity. See Fig. 4 for examples
of collected gestures.

C. Sensory Modalities

Multimodal perception is essential for artificial systems.
We provide several sensory inputs in our environment to
build a multimodal learning framework; see Fig. 2. The
observational space consists of the following inputs:

Vision:  Unity’s built-in camera component allows a 2D
view of the virtual space. It is attached to the eyesight of
the embodied agent at 1.5m from the ground with a 90-
degree field-of-view and provides real-time RGB images in
the first-person view. The resolution of the RGB images is
3 x 224 x 224, and each pixel contains scaled RGB values
from O to 1.
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Fig. 4: Examples of referencing and intervention gestures. The first 4 columns are referencing gestures, while the last one is an
intervention gesture. Human players perform different gesture styles while pointing at various target objects in the scene. Top row shows
the body movements captured by Kinect, and the bottom row shows the hand configurations recorded by Leap Motion.

Depth:  The depth image is extracted from the depth
buffer of Unity’s camera view. It has a size of 1 x 224 x 224,
and each pixel value is a floating-point between 0 and 1,
representing the distance from the rendered viewpoint to the
agent, linearly interpolated from Om to 10m.

Collision: ~ Unity checks for collisions dynamically in
the learning environment. Every time the agent triggers a
collision, it can report this event and prevent the agent
from penetrating into the object meshes. Note that for our
agent design, it can slide along the object surface it collides
with. This “sliding” mechanics has been noticed by recent
work [76] and may hinder sim2real transition. We rectify this
issue by addressing penalties in rewards for such behaviors.

Gesture: As previously mentioned, we use Oculus,
Kinect, and Leap Motion to capture human gestures. Each
gesture motion is saved as a sequence of vectors with 100
steps and 95 features consisting of body and hand poses.
Note that for referencing gestures, we select motions from
the corresponding episode. For intervention gestures, we
randomly sample one from saved recordings and use it only
when the agent faces away from the target. The raw gesture
inputs are encoded and piped into our learning model.

IV. LEARNING TO NAVIGATE WITH GESTURE

In this section, we describe our end-to-end gesture learning
model using Deep Reinforcement Learning (DRL). We start
by introducing the formulation of the DRL model we use,
followed by the other components of the entire architecture.

A. Problem Formulation

We take the ObjectGoal task [77] as our navigation task,
where the agent must navigate to an object of a specific
category, as our experimental testbed. The details of the task
and the agent embodiment are explained below:

Agent Embodiment:  The learning agent is represented
by a robot character with a capsule bound. The agent has a
rigid body component attached to it so that it can detect
collisions with environmental objects. It has four available

actions: turn left, turn right, move forward, and stop. Each
turning action results in a rotation of 15°, and each forward
action results in a forward displacement of 0.25m.

Task Definition: = The agent is initiated at a random
location, and an object is selected randomly as the target;
we ensure that the agent can reach the target. Note that there
can be more than one instance of the target object type in
the same environment. To complete the task, the agent must
navigate to the target object instance with a stopping distance
equal to or less than 1.5m. The agent then needs to issue a
termination (i.e., stop) action in the proximity of the goal,
and the object must also be within the agent’s field of view
in order to succeed. An episode is terminated if the above
success criteria are met or the maximum allowed time step
(which is 100 in our setup) is reached. We allow the agent to
issue multiple stops in an episode but measure success rates
using different numbers of maximum stops (1-3). We allow
an unlimited number of stops in training; the agent needs
to explore and learn after issuing incorrect stops in earlier
episodes.

B. Policy Learning with PPO

We formulate our visual gesture navigation using DRL,
specifically PPO. Our learning process can be viewed as
a Markov Decision Process (MDP). At each time step t,
the agent perceives a state s; (i.e., a combination of the
sensory inputs), receives a reward r; from the environment,
and chooses an action a; according to the current policy 7:

ag ~ 7T9(at|5t)a (1

where 6 represents parameters for the function approximator
of the policy . We implement PPO with a time horizon of
128 steps, batch size of 128 and 4 epochs for each iteration
of gradient descent, and buffer size of 1280 for each policy
update. We use Adam [78] as the optimizer with a learning
rate of 0.0003 and a discount factor of 0.99.

The agent receives a positive reward of +1 if it completes
the navigation successfully. Since we encourage the agent to
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Fig. 5: The model overview. Our model fuses perceptions from
different sensory modalities, and the actor-critic model samples an
action in each step according to the updated policy and send it back
to the environment.

reach the target object with the minimal amount of steps,
the agent receives a small time penalty of —0.001 for each
step. We further add a collision penalty of —0.005 for each
collision detected; the collision penalty is added to mitigate
the aforementioned “sliding” behavior. If the agent stops in
an ineligible location, a penalty of —0.01 is added.

C. Model Overview

We equip the embodied agent with different sensory
modalities, and each of them feeds into a part of the
input network for the RL model. Below we introduce these
components of the architecture.

Visual network:  The backbone of the visual network is
ResNet-18 [79] pre-trained on ImageNet. It takes 224 x 224
RGB and depth images as inputs. The weights of all layers in
the network except the last fully connected layer are frozen
during training.

Gesture network:  The raw input of the gesture network
is a sequence with 100 time steps and 95 features. Each
feature represents the muscle value from the Unity humanoid
model, which can be considered as the coordinates for
tracked body and hand joints. The gesture input is flattened
and encoded into a vector. In addition, we provide the target
object category from a selected set and pass it to an embed-
ding layer. This is equivalent to speech or text instructions
from a user in prior work on interactive embodied agent
learning. Since our focus in this paper is gesture, we simplify
this part of the input as a categorical variable (e.g., a single
word in a fixed vocabulary). Note that this vector alone does
not specify the target object location: There can be multiple
instances of the same object category in the scene, and the
agent needs to infer which instance the human player is
referring to. This vector is concatenated with encoded gesture
inputs and visual features by an observation combiner. There
is a memory unit using Gated Recurrent Unit (GRU) [80]
after this combiner. Fig. 5 illustrates the entire architecture.

V. EVALUATION

We evaluate our methods in Ges-THOR environment. AI2-
THOR provides 120 scenes covering four different room
types: kitchen, living room, bedroom, and bathroom. Each

room has its own unique appearance and arrangements. We
randomly split 30 scenes for each scene type into 20 training
rooms, 5 validation rooms, and 5 testing rooms.

There are 38 object categories available for all scenes.
Since there is almost no overlap of objects for different
scene types, we train and evaluate separately for each scene
type. We evaluate each scene for 250 episodes and report the
average results for each scene type.

Evaluation Metrics: We use 2 metrics to evaluate
different methods:

o SR: for the i-th episode, the success can be marked by

a binary indicator S;. The success rate is the ratio of

successful episodes over completed episodes N:

1 N
SR:N;SZ-. 2)

o SPL: this metric is proposed by Anderson et al. [77]. It
measures the efficacy of the navigation. SPL is calculated
as follows:

SPL 1%5( l ) 3)

N &7 \max(p;, i) )
where [; is the shortest path distance from the agent’s
starting position to the goal in episode 4, and p; is the
actually path length taken by the agent.

We have three methods to evaluate the agent performance:
(1) Baseline: the agent only has the visual (i.e., RGB and
depth images) and object category information. (2) Referenc-
ing Gesture: in addition to (1), the agent receives referencing
gesture inputs. (3) Intervention Gesture: in addition to (1),
the agent receives rejective gesture inputs when the forward
direction forms an angle larger than 90 degrees between the
agent and the target.

In our comparative setting, the baseline model does not
use any gestures. While one may expect that it should
always underperform, this is only true if the agent has
learned and inferred the semantics of human gestures and
incorporated the signals during navigation, which is the focus
of our evaluation. Again, this is not trivial because we do
not pre-define the meaning of any gestures. Similarly, the
intervention gestures is a strong directive feedback from the
human user, but we evaluate how well the agent can infer
its meaning and adopt it in navigation.

Navigation Performance: Table I show the perfor-
mance of different methods when evaluated at the first stop,
and Table IT show the performance at test scenes evaluated
at a different number of stops. From the both results, we
confirm that adding gestures can significantly improve the
navigation success rate as well as the efficiency over the
baseline model. Table I puts a hard constraint on the number
of stops to 1 to match the state-of-art benchmarks [77]. Of
note, models trained with intervention gestures outperform
models trained with referencing gestures, both in SR and
SPL, demonstrating that intervention gesture is a more effec-
tive kind of gesture to communicate with the agent. Table II
reports results on test scenes with a different number of
allowed stops. We should see that both SR and SPL increase
with the number of allowed stops, and the improvement of



Success Rate (%)

Success weighted by Path Length (%)

Scene Types Methods

Train Validation Test Train Validation Test

Baseline 12.3 10.2 11.5 7.6 7.1 79

Kitchen Referencing 21.1 18.7 19.2 13.3 11.6 11.2
Intervention 44.9 31.5 40.3 27.0 20.0 24.0

Baseline 6.3 3.6 3.5 4.1 2.3 2.1

Living Room Referencing 4.9 3.2 2.7 32 1.7 1.6
Intervention 13.0 9.0 9.5 7.8 53 54

Baseline 15.2 9.1 8.7 9.1 5.3 5.4

Bedroom Referencing 43.5 10.7 15.4 28.3 6.6 10.5
Intervention 424 224 20.4 27.5 13.8 11.9

Baseline 16.3 15.5 11.9 114 9.1 8.8

Bathroom Referencing 33.0 19.4 19.9 20.5 11.1 11.7
Intervention 40.5 32.2 35.0 29.1 21.0 23.0

Baseline 12.5 8.1 9.9 6.2 8.6 5.9

Referencing 25.6 16.3 13.0 7.8 14.3 8.8

Average Intervention 35.2 229 23.8 15.0 26.3 16.1
Scene Prior [28]* 13.4 6.7

TABLE I: Evaluation results for train/validation/test split. Success Rate (SR) and Success weighted by Path Length (SPL) at the first
stop are reported in this table. We compare models trained with referencing gestures and intervention gestures against a baseline model.
* Reported from [28]. This method uses additional scene prior knowledge but not gestures.

Success Rate (%)

Success weighted by Path Length (%)

Scene Types Methods
1 Stop 2 Stop 3 Stop 0 1 Stop 2 Stop 3 Stop 0

Baseline 11.5 18.0 23.1 49.3 7.9 12.1 14.6 25.1
Kitchen Referencing 19.2 26.3 29.7 479 11.2 15.0 16.6 24.1
Intervention 40.3 55.1 62.8 89.0 24.0 32.7 37.2 52.8
Baseline 35 6.4 9.5 233 2.1 3.7 5.1 9.8
Living Room Referenc@ng 2.7 39 4.7 7.8 1.6 24 2.9 4.7
Intervention 9.5 16.9 21.7 58.0 54 9.8 12.6 30.8
Baseline 8.7 15.3 18.4 31.0 54 9.5 11.2 17.0
Bedroom Referencing 154 18.7 20.2 31.9 10.5 12.4 133 19.2
Intervention 20.4 27.9 33.5 51.2 11.9 16.3 19.5 29.7
Baseline 11.9 18.9 23.7 57.8 8.8 13.8 16.9 33.1
Bathroom Referencing 19.9 30.5 35.9 64.3 11.7 18.1 21.3 324
Intervention 35.0 44.6 51.7 76.5 23.0 29.6 33.9 48.3
Baseline 8.9 14.7 18.7 40.4 6.1 9.8 12.0 21.3
Average Referencing 14.3 19.9 22.6 38.0 8.8 12.0 135 20.1
Intervention 26.3 36.1 424 68.7 16.1 22.1 25.8 40.4

TABLE II: Evaluation results for test scenes with different number of allowed stops (co denotes infinte allowed stops). SR and SPL
are presented. We compare models trained with referencing gestures and intervention gestures against a baseline model.

SR and SPL with gestures is more evident in a lower number
of allowed stops.

Qualitative Results:  To visualize the effectiveness of
our methods, we show some qualitative results in Figs. 6
and 7. Fig. 6 compares our referencing gesture model against
the baseline model with visualized trajectories in different
scenes and targets. It could be observed that in all scenes, our
referencing gesture model enables the agent to navigate to
the target more intelligently, while the baseline model often
struggles to find the target and stop or takes a longer path
to find the target. Fig. 7 demonstrates how our intervention
gesture model works to improve the navigation significantly.
In this example, the agent rotates at the place where it
faces back to the target and is instructed with interventions
gestures until the target is in its field of view before making

any movements. This indicates that our agent is able to
understand and react to the intervention gestures, resulting
in much better navigation performance.

VI. CONCLUSION

In this paper, we propose a new framework for embodied
visual navigation where human users can give instructions
to the autonomous agent using gestures. Such agents and
gesture based interface will be very useful for collaborative
robots or virtual agents. We have built a VR-based interactive
learning environment, Ges-THOR, based on AI2-THOR and
designed an end-to-end deep reinforcement learning model
for the navigation task. Our experiments show that the
agent is able to interpret human instructions with gestures
and improve its visual navigation. We also conclude that
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Fig. 6: Qualitative results with visualizations of trajectories for
baseline (left) and referencing gesture (right) models. Our agent
can efficiently navigate to the target with the help of gestures.
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Fig. 7: Qualitative results for the intervention gesture model.
When the agent is back to the target, it receives interventional
gestures and could first rotate until it faces the target before making
any forward movements, thus increasing the navigation success rate
and efficiency.

interactive activities during agent task execution can improve
performance. While the main setting and experimental design
of our study have been used in prior works, to the best of
our knowledge, our paper is the first incorporating human
gestures for embodied agent learning and showing the agent
can learn the semantic of gestures without supervision. We
will make publicly available our simulation environment
and the recorded gesture dataset for any future research
for Human-Al interaction via gestures. The future directions
include adding more objects, tasks, gestures, and multiple
agents in the scene, e.g., navigating to an object and bring
it back by showing gestures in our framework and also
allowing agents to make gestures to the human player such
that both parties can communicate with gestures, which will

also help humans to utilize even more diverse gestures to
communicate with agents.
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