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Objective

Holistic 3D scene understanding
•The estimation of the 3D camera pose.
•The estimation of the 3D room layout.
•The estimation of the 3D object bounding boxes.
We aim to recover a geometrically consistent
and physically plausible 3D scene and jointly
solve all three tasks in an efficient and coopera-
tive way, only from a single RGB image.

Motivation

•Humans are capable of performing such tasks
effortlessly within 200ms.

•Most current methods are inefficient or only
tackle the problem partially.

Problems

•2D-3D consistency. How to maintain a high
consistency between the 2D image plane and the
3D world coordinate?

•Cooperation. How to solve the three tasks
cooperatively and make different modules
reinforce each other?

•Physically Plausible. How to model a 3D
scene in a physically plausible fashion?

We solve these problems by cooperative training.

Contribution

1 Formulate an end-to-end model for 3D holistic
scene understanding tasks.

2 Propose a novel parametrization of the 3D
bounding boxes and integrate physical
constraint, enabling the cooperative training.

3 Bridge the gap between the 2D image plane
and the 3D world by introducing a differentiable
objective function between the 2D and 3D
bounding boxes.

4 Our method significantly outperforms previous
methods and runs in real-time.
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Figure 1: Overview of the proposed framework for cooperative holistic scene understanding.

(a) We first detect 2D objects and generate their bounding boxes, given a single RGB image as the input, from which (b) we can estimate
3D object bounding boxes, 3D room layout, and 3D camera pose. (c) We project 3D objects to the image plane with the learned camera
pose, forcing the projection from the 3D estimation to be consistent with 2D estimation.
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Figure 2: 3D Object Parametrization.
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Figure 3: Illustration of the network architecture.

Cooperative Training

We propose three cooperative losses which jointly provide supervisions and makes a physically plausible estimation.
•3D bounding box loss: optimizes the GGN and LON cooperatively by constraining the corners of each bounding box.
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•2D projection loss: maintains the coherence between the 2D bounding boxes and the 3D bounding boxes.
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•Physical loss: penalizes the physical violations between 3D objects and 3D room layout.
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Qualitative Results

Figure 4: Qualitative results on SUN RGB-D dataset.

Ablative Study
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Figure 5: Comparison with two variants of our model.
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