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Motivation Figure 1: Overview of the proposed framework for cooperative holistic scene understanding.

(a) We first detect 2D objects and generate their bounding boxes, given a single RGB image as the input, from which (b) we can estimate
3D object bounding boxes, 3D room layout, and 3D camera pose. (¢c) We project 3D objects to the image plane with the learned camera
pose, forcing the projection from the 3D estimation to be consistent with 2D estimation.

« Humans are capable of performing such tasks
effortlessly within 200ms.

« Most current methods are inefficient or only
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methods and runs in real-time.



