

Holistic⁺⁺ Scene Understanding

We propose a new task Holistic⁺⁺ Scene Understanding which simultaneously solve both s 3D holistic scene parsing task and a human pose estimation task from a single RGB image.

• Holistic 3D scene understanding

- The estimation of the 3D camera pose.
- The estimation of the 3D room layout.
- The estimation of the 3D object bounding boxes.
- Global 3D human pose estimation

Motivation

- Psychology studies have established that even infants employ human-object interaction (HOI) and physical commonsense in perceiving occlusions, tracking small objects, realizing object permanence, recognizing rational HOI, and understanding intuitive physics.
- Scene reconstruction and human pose estimation are intertwined tightly since the indoor scenes are invented and constructed by human designs to support daily activities.

Contribution

- Propose a new **holistic**⁺⁺ **scene understanding** task with a computational framework to jointly infer human poses, object poses, room layout, and camera pose, all in 3D.
- 2 Integrate **HOI** to bridge the human pose estimation and the scene reconstruction, reducing geometric ambiguities (solution space) of the single-view reconstruction.
- 3 Incorporate **physical commonsense**, which helps to predict physically plausible scenes and improve the 3D localization of both humans and objects.
- Our method demonstrates the joint inference improves the performance of each sub-module and achieves **better generalization ability** across various indoor scene datasets compared with purely data-driven methods.

Holistic⁺⁺ Scene Understanding: Single-view 3D Scene Parsing and Human Pose Estimation with Human-Object Interaction and Physical Commonsense

Yixin Chen*, Siyuan Huang*, Tao Yuan, Siyuan Qi, Yixin Zhu, Song-Chun Zhu

University of California, Los Angeles

Probabilistic Formulation and Inference

The configuration of an indoor scene is represented by a parse graph pg = (pt, E), which combines a parse tree pt and contextual relations E among the terminal nodes defined on a Markov Random Field (MRF). The optimal parse graph pg^* given an image I is inferred by a maximum a posteriori (MAP) estimation:

$$pg^* = \arg\max_{pg} p(pg|I) = \arg\max_{pg} p(pg) \cdot p(I|pg) = \arg\max_{pg} \frac{1}{Z} \exp\{-\mathcal{E}_{pg} \left\{-\mathcal{E}_{pg}\right\} - \mathcal{E}_{pg} \left\{-\mathcal{E}_{pg}\right\} - \mathcal{E$$

Physical Prior $\mathcal{E}_{phy}(pg)$ represents physical commonsense in a 3D scene. We consider two types of physical relations among the terminal nodes: support relation E_s and collision relation E_c . Human-object Interaction Prior $\mathcal{E}_{hoi}(pg)$ evaluates the interaction between an object and a human given an action label. Likelihood $\mathcal{E}(I|pg)$ characterizes the consistency between the observed 2D image and the inferred 3D result.

Given an initial parse graph, we use Markov chain Monte Carlo (MCMC) with simulated annealing to jointly optimize the room layout, 3D object poses, and 3D human poses through the non-differentiable energy space.

Inference with physical commonsense \mathcal{E}_{phy} but without HOI \mathcal{E}_{hoi} : randomly select from room lay-

Inference with total energy \mathcal{E} , including physical commonsense and HOI: randomly select from lay-

 $\mathcal{E}_{phy}(pg) - \mathcal{E}_{hoi}(pg) - \mathcal{E}(I|pg)\}.$

Table 1. Quantitative Results of 3D Scene Reconstruction								
Huang <i>et al</i> . [15]			Ours					
2D IoU (%)	3D IoU (%)	Depth (m)	2D IOU (%)	3D IoU (%)	Depth (m)			
68.6	21.4	-	75.1	24.9	-			
63.9	17.7	-	72.9	18.2	-			
67.3	-	0.375	73.6	-	0.162			
	1. Quantit Hu 2D IoU (%) 68.6 63.9 67.3	I. Quantitative Restriction Huang et al. [15] 2D IoU (%) 3D IoU (%) 68.6 21.4 63.9 17.7 67.3 -	1. Quantitative Results of 31 Huang et al. [15] 2D IoU (%) 3D IoU (%) Depth (m) 68.6 21.4 - 63.9 17.7 - 67.3 - 0.375	1. Quantitative Results of 3D Scene RHuang et al. [15] $2D IoU (\%)$ $3D IoU (\%)$ $Depth (m)$ $2D IOU (\%)$ 68.6 21.4 - 75.1 63.9 17.7 - 72.9 67.3 - 0.375 73.6	1. Quantitative Results of 3D Scene Reconstruct Huang et al. [15] Ours 2D IoU (%) 3D IoU (%) Depth (m) 2D IOU (%) 3D IoU (%) 68.6 21.4 - 75.1 24.9 63.9 17.7 - 72.9 18.2 67.3 - 0.375 73.6 -			

Table 2. Quantitative Results of Global 3D Pose Estimation								
Methods	VNect[27]		Baseline		Ours			
Metrics	2D (pix)	3D (m)	2D (pix)	3D (m)	2D (pix)	3D (m)		
PiGraphs	63.9	0.732	284.5	2.67	15.9	0.472		
SUNRGBD	-	-	45.81	0.435	14.03	0.517		
WnP	50.51	0.646	325.2	2.14	20.5	0.330		
I	1	II	1	II	1			

Optimization Process

Figure 2: The optimization process of the scene configuration by simulated annealing MCMC.

Qualitative Results

Table 3. Ablative results of HOI on 3D object IoU (%), 3D pose timation error (m), and miss-detection rate (MR, %)

Methods	w/o hoi			Full model		
HOI Type	Object ↑	Pose \downarrow	$\mathrm{MR}\downarrow$	Object ↑	Pose \downarrow	$MR\downarrow$
Sit	26.9	0.590	15.2	27.8	0.521	13.1
Hold	17.4	0.517	78.9	17.6	0.490	54.6
Use Laptop	14.1	0.544	58.8	15.0	0.534	43.3
Read	14.5	0.466	65.3	14.3	0.453	41.9