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Abstract. Understanding and interpreting human actions is a long-
standing challenge and a critical indicator of perception in artificial in-
telligence. However, a few imperative components of daily human ac-
tivities are largely missed in prior literature, including the goal-directed
actions, concurrent multi-tasks, and collaborations among multi-agents.
We introduce the LEMMA dataset to provide a single home to address
these missing dimensions with meticulously designed settings, wherein
the number of tasks and agents varies to highlight different learning ob-
jectives. We densely annotate the atomic-actions with human-object in-
teractions to provide ground-truths of the compositionality, scheduling,
and assignment of daily activities. We further devise challenging com-
positional action recognition and action/task anticipation benchmarks
with baseline models to measure the capability of compositional action
understanding and temporal reasoning. We hope this effort would drive
the machine vision community to examine goal-directed human activities
and further study the task scheduling and assignment in the real world.

Keywords: Dataset, Multi-agent Multi-task Activities, Compositional
Action Recognition, Action and Task Anticipations, Multiview

1 Introduction

Activity understanding is one of the most fundamental problems in artificial
intelligence and computer vision. As the most readily available learning source,
videos of daily human activities could be used to train intelligent agents and, in
turn, to assist humans. However, compared to recent progress in learning from
static images [2,23,22,41], current machine vision’s ability to understand activi-
ties from videos still falls short. Admittedly, activity understanding is inherently
more challenging, which requires reason about the complex structures in ac-
tivities along the additional temporal dimension; but we argue there are more
profound reasons that we must look back to the origin of activity understanding.

The study and analysis of human motion perception are rooted in the field of
neuroscience [54]. Using a dot-representation of human motions, Johansson [26]
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Fig. 1: Illustrations of the proposed multi-view dataset with annotations. From
top to bottom: frames captured from the third-person primary view, frames
captured from the third-person side view, annotated segments of each agent
executing tasks, and corresponding frames captured from the first-person view.

adopted a method to produce proximal patterns (i.e., the moving light display
experiment), which demonstrated that human perception of activities does not
tightly couple with pixel-based features; human subjects can still perceive the
semantics of activities from sparse representations of motions. Evidence from de-
velopmental psychology, the classic Heider-Simmel experiment, further suggests
that we perceive human activities from as goal-directed behaviors [57,5,15,11];
it is the underlying intent, rather than the surface pixels or behavior, that mat-
ters when we observe motions [4]. Such a goal-directed [31] perspective of
activity understanding has been largely left untouched in computer vision.

Daily human activities are intrinsically multi-tasked [36,44]; understanding
activity naturally demands a learning system to interpret concurrent interac-
tions. As agents’ decision-making processes are deeply affected by their unique
social values, task scheduling is significantly affected by interactions (e.g ., co-
operation, competition, subordination) among multi-agents [28]. These observa-
tions implicate that the machine vision system must objectively understand how
a given task should be decomposed into atomic-actions, how multi-tasks should
be executed and coordinated in parallel among multi-agents, and take the per-
spective from human agents to understand why the observed human activities
are optimal solutions. Such a decompositional, multi-task, multi-agent,
diagnostic-driven, social perspective of activity understanding is critical
for an intelligent agent to understand human behavior and team with humans
collaboratively; yet it is broadly missing in activity understanding literature.

The semantics of human actions are intrinsically ambiguous when described
in natural language. For instance, although both “opening the fridge” and “open-
ing a book” use the action verb “open,” their semantics of the actions are utterly
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different. In this paper, we take the stance of Grice’s influential work on language
act [20]—technical tools for reasoning about rational action should elucidate lin-
guistic phenomena [17]. Specifically, the compositional relations between the
verbs and nouns could reveal the functionality of the object and the patterns
of human-object interactions, which subsequently facilitate the understanding
of the observed human activities and the language that describes them. Though
the previous work [19] attempted to address this issue, more general and flexible
compositional relations for describing human actions interacting with
objects are requisite for a goal-directed activity understanding.

Motivated by these deficiencies in prior work, we introduce the LEMMA
dataset to explore the essence of complex human activities in a goal-directed,
multi-agent, multi-task setting with ground-truth labels of compositional atomic-
actions and their associated tasks. By quantifying the scenarios to up to two
multi-step tasks with two agents, we strive to address human multi-task and
multi-agent interactions in four scenarios: single-agent single-task (1ˆ1), single-
agent multi-task (1 ˆ 2), multi-agent single-task (2 ˆ 1), and multi-agent multi-
task (2 ˆ 2). Task instructions are only given to one agent in the 2 ˆ 1 setting to
resemble the robot-helping scenario, hoping that the learned perception models
could be applied in robotic tasks (especially in HRI) in the near future.

Both the third-person views (TPVs) and the first-person views (FPVs) were
recorded to account for different perspectives of the same activities; see Fig. 1.
We densely annotate atomic-actions (in the form of compositional verb-noun
pairs) and tasks of each atomic-action, to facilitate the learning of multi-agent
multi-task task scheduling and assignment; see more details in Section 2.

1.1 Related Work

In this section, we review and compare prior indoor activity datasets on the basis
of tasks and captured video contents; see a detailed summary in Table 1.

Crowd-sourced from online videos and movie sharing platforms, typical large-
scale video datasets [49,27,8,9,14] focus on video-level summarization and
classification. Although activity classes exhibit a large inter-class variability,

Table 1: Comparisons between LEMMA and relevant indoor activity datasets.

Dataset
Task

Annotation
Multi-
agent

Multi-
task

Multi-
view Samples Frames

Action
Classes

Action
Segments

Actions per
Video

Modality Year

MPII Cooking [42] 3 7 7 7 273 2.9M 88 14,105 51.7 RGB 2012
ADL [39] 7 7 3 7 20 1.0M 32 436 13.6 RGB 2012

50Salads [50] 3 7 7 7 50 0.5M 17 966 19.3 RGB-D 2013
CAD-120 [29] 7 7 7 7 120 0.1M 10 1,175 9.8 RGB-D 2013
Breakfast [30] 3 7 7 3 433 3.0M 50 3,078 7.1 RGB 2014

Watch-n-Patch [59] 3 7 7 7 458 0.1M 21 2978 6.5 RGB-D 2015
Charades [48] 7 7 3 7 9,848 7.4M 157 67,000 6.8 RGB 2016

Something-Something [19] 7 7 7 7 108,499 - 174 108,499 1.0 RGB 2017
EGTEA GAZE+ [34] 3 7 7 7 86 2.4M 106 10,325 120.1 RGB 2018
EPIC-KITCHENS [12] 7 7 3 7 432 11.5M 149 39,596 91.7 RGB 2018
LEMMA (proposed) 3 3 3 3 324 4.6M 641 11,781 36.4 RGB-D 2020
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spanning from outdoor sports activities to indoor household activities, they gen-
erally lack sequential, goal-directed activities. Notably, they suffer from a major
drawback [16]; activities are highly correlated to the general scene and object
context, possessing a strong dataset bias for activity understanding.

Some datasets tackle the human atomic-actions using short clips or lim-
ited tasks, with a focus on the semantics of action verbs and objects [19], 3D
action analysis [33,25,45], and action grounding with multi-modality inputs [35].
Although such datasets are suitable for atomic-actions, they are intrinsically
impaired at studying the long-term reasoning of goal-directed human activities.

Recently, concurrent actions have been taken into consideration. For in-
stance, Charades [48] is a large-scale benchmark for household activities, and
Charades-Ego [47] steps further with both FPVs and TPVs. However, the ac-
tivities involved are mostly unrelated to specific goals due to the crowdsourced
script generation process. Similarly, although Multi-THUMOS [60] and AVA [21]
focus on highly paralleled activities, and some datasets look at the temporal or-
der of activities [7,52], the unnaturally scripted activities result in the lack of
meaningful goal-directed tasks exhibited in our daily life.

Conversely, instructional video datasets [1,50,30,29,43] tackle goal-directed
multi-step tasks, mostly in cooking, repairing, and assembling activities. In spite
of their relevance, they fail to account for multi-agent or multi-task problems.
EPIC-KITCHENS [12] is perhaps the only exception; it records naturally paral-
leled task execution of agents in kitchen environments, but with no task specifica-
tion or multi-agent interactions. Additionally, prior instructional video datasets
have either drastic view perspective changes [61,1,51,53] or limited egocentric
view with severe occlusions [39,34], hindering the activity understanding.

Another related stream of work is the learning of group-level activities in
a multi-agent setting [24], such as detecting key actors [40], predicting future
trajectories [38,32], and recognizing collective activities [10,37,46]. However, such
coarse-grained multi-agent interactions leave the latent subtlety of collaboration
and task assignment untouched. Although simulation-based multi-agent envi-
ronments [3,55,6] can partially address such an issue, learning from noisy and
real visual input in physical work is still essential for understanding collaborative
planning behaviors of agents in the context of complex daily tasks.

The collected LEMMA dataset strives to address the shortcomings of the
aforementioned works, capturing goal-directed, decompositional, multi-task ac-
tivities with multi-agent collaborations. As shown in Table 1, the size, annota-
tion, and actions per video of LEMMA are at a comparable scale to state-of-the-
art benchmarks. We hope such a design will boost the study of human activity
understanding and potentially motivate new cross-disciplinary research insights.

1.2 Contributions

This paper’s contribution is three-fold. (i) We design and collect a multi-view
video dataset, capturing multi-agent, multi-task activities with goal-directed
daily tasks. (ii) We annotate the dataset, focusing on the compositionality of
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actions and the governing task for each atomic-action. (iii) We provide composi-
tional action recognition and action/task anticipation benchmarks by consider-
ing the aforementioned features; we also compare and analyze multiple baseline
models to promote future research on human activity understanding.

2 The LEMMA Dataset

This section describes the design, data collection, and data annotation process of
the LEMMA dataset. The dataset is profiled by various statistics from diversified
perspectives to highlight its potentials in activity understanding.1

2.1 Activities and Scenarios

We first build a task pool of 15 common tasks in the kitchen (e.g ., “make juice,”
“make cereal”) and living room (e.g . “watch TV,” “water plant”). On top of
these tasks, we design four types of scenarios (with a different focus) to study
goal-directed multi-step multi-task indoor activities in multi-agent settings.
1. Single-agent Single-task (1 ˆ 1): Each participant was first asked to per-
form all tasks from the task pool independently; this ensures participants are
clear with the goal of each task and could schedule and assign tasks efficiently
in later multi-task or multi-agent scenarios. Participants were asked to read the
instructions and walk around to get familiarized with the new environments.
2. Single-agent Multi-task (1 ˆ 2): Each participant was then asked to si-
multaneously perform two tasks, randomly sampled from the task pool. The
participants determined the order of task executions without any restrictions.
3. Multi-agent Single-task (2 ˆ 1): Two participants were asked to perform
a single task cooperatively; the task is randomly selected from the task pool.
To emulate human-robot teaming accurately, only one participant (leader) was
provided with task instructions; the other participant (helper), with no knowl-
edge of the task, was asked to collaborate with the primary agent to finish the
task efficiently. Only nonverbal communications (e.g ., gestures) were allowed
between two participants; this design would open up new venues on nonverbal
communications and the emergence of language in real-world environments.
4. Multi-agent Multi-task (2 ˆ 2): Both participants were provided with
task instructions. Since both participants were asked to accomplish two complex
multi-step tasks collaboratively, this scenario has the most natural activity/task
patterns and richest mechanisms for learning task scheduling and assignment.

In total, the LAMMA dataset includes 37 unique task combinations in the
multi-task scenarios. Participants were explicitly instructed to perform tasks
efficiently and provided with a brief task instruction with basic environment
information. Except for the specification of the goal states for each task, we add
no additional constraint to the order of task execution; participants perform tasks
naturally and freely. Fig. 2 shows a sample instruction for the 2 ˆ 1 scenario.

1 The dataset will be made publicly available at the following website with download
links and util code: https://sites.google.com/view/lemma-activity.

https://sites.google.com/view/lemma-activity
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Lorem ipsum

In this task, you are asked to make watermelon juice. Here are things to know before your start:
- All the items needed for this task can be found either in the fridge, on the table, or in one of the drawers or closets.
- Please cut the watermelon into pieces before blending it with the juicer.
- Please keep the kitchen clean; wash all the tools/objects you used.
- You will have an additional helper to collaborate with you.
  - Do Not speak with them. They do NOT know anything about the task you are working on.
  - Feel free to ask them for help, but only using non-verbal communication (e.g., gestures). For instance, you may point
    to something, or any other gestues you think may help instruct them.

In this task, you are asked to collaborate with your friend to finish a task in the kitchen.
Here are things to know before your start:
- All the items needed for this task can be found either in the fridge, on the table, or in one of the drawers or closets.
- Please keep the kitchen clean; wash all the tools/objects you used.
- As only your friend knows the task instruction, please try to infer what the task is and offer helps.
- You may not speak with your friend. You can only use non-verbal communication (e.g., gestures).

Leader

Helper

Fig. 2: An exemplar task instruction of making juice for two agents in a Multi-
agent Single-task (2 ˆ 1) scenario. Middle: Point clouds, TPVs, and FPVs.

2.2 Data Collection

We recorded the data in 7 different Airbnb houses, performed by 8 individuals
in 14 unique kitchens/living rooms. To provide different views of performing the
daily activities and avoid occlusion in narrow spaces, we set up two Kinect Azure
cameras to capture the RGB-D videos of the global scene and human bodies.
In addition, each participant was instructed to wear a head-mounted GoPro
camera to capture detailed agent-specific actions in an egocentric view. In post-
processing, we synchronize the camera recordings of all views at a frame rate of
24 FPS. Fig. 2 shows an example of a scene with a point cloud merged from two
Kinects and four RGB views from both Kinects and GoPros. Combining TPVs
and FPVs captures most of the details of performing daily activities, provides
sufficient data for understanding human activities, and benefits future research
in embodied vision. The additional depth information and 3D human skeletons
captured by Kinects can also be adopted for future 3D understanding tasks.

2.3 Ground-truth Annotation

We used the Amazon Mechanical Turk (AMT) to annotate both human bound-
ing boxes and action information in the synchronized recordings. Specifically, ac-
tion information includes the temporal localization of segments, semantic labels,
and the governing task of each atomic-action. The semantic labels of atomic-
actions are composed of verbs and nouns, representing flexible compositional
relations to describe human actions. Additional details are provided below.
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Fig. 3: Statistics of the LEMMA dataset.

Bounding Boxes and Segments: Bounding boxes of humans are annotated
on the primary view of TPVs. Skeletons captured by Kinects are used to provide
initial estimations of bounding boxes. Next, we use Vatic [56] to adjust bounding
boxes and annotate the segments of atomic-actions. The segments of atomic-
actions are defined by verbs without corresponding nouns, for example, “put
to using ,” “pour into from .” Each video was first annotated by two
AMT workers; task-irrelevant actions (e.g ., “walking,” “holding”) are ignored.
We then compute the Intersection over Union (IoU) of both bounding boxes and
temporal segments. A third AMT worker is asked to fine-tune the annotations
if the IoU of bounding boxes or segments annotated is lower than 0.5.

Atomic-actions and Activities: Given the verbs of the atomic-action seg-
ments, two AMT workers were asked to fill in the blanks of the verb patterns
and annotate the governing tasks in multi-task scenarios with a self-developed
interactive annotation tool (see supplementary material). We allow concurrent
actions for each agent with multiple nouns for the same verb; for example, “get
spoon, cup from table using hand.” As there might exist ambiguities in describ-
ing the atomic-actions with natural languages, such as the possible annotations
of “wash cup using water” vs. “wash cup using sink,” we manually go through
all the annotations and resolve the ambiguous action annotations following a
uniform criterion. Examples of annotation results are shown in supplementary.
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Fig. 4: The co-occurrence statistics for verbs, nouns, and tasks in LEMMA.

2.4 Dataset Statistics

In total, we recorded 324 activities, generating 324 ˆ 2 TPV videos (from both
Kinects) and 445 FPV videos. Among them, 136 activities were performed in
kitchens and the remaining 188 in the living rooms. The collected LEMMA
dataset consists of 127 1 ˆ 1 activities, 76 1 ˆ 2 activities, 66 2 ˆ 1 activities,
and 55 2 ˆ 2 activities. The frequency of the recorded tasks is shown in Fig. 3b.
The total duration of all the activities is 10.1 hours, with an average duration
of 2 minutes per video and the longest activity of 7 minutes.

We retrieved a total of 4.6 million images during post-processing, including
2.9 million RGB images captured by both GoPros and Kinects and 1.7 million
depth images captured by Kinects. We annotated 0.9 million RGB frames cap-
tured by the primary view Kinect and gathered 0.8 million annotated frames
with one or more actions performed by each of the agents (if multiple).
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After resolving annotation ambiguities, we collected 24 verb classes and 64
noun classes, resulting in 862 compositional atomic-action labels, of which 641
appear more than 50 times. We show the frequencies of annotated verbs and
nouns in Figs. 3a and 3c; both distributions roughly follow the Zipf’s law.

Co-occurrence relations among annotated verbs, nouns, and tasks are shown
in Fig. 4. As we can see from Figs. 4a and 4c, verbs like “get” and “put” co-occur
with various nouns in almost all of the tasks, which aligns with our intuition that
moving objects around consists a large portion of our daily activities. Interactive
actions between participants are captured by verbs (e.g ., “point-to”) and nouns
(e.g ., “P1,” short for “participant 1”) in the form of annotations like “get knife
from P1 using hand” or “point-to sink.”

3 Benchmarks

Aligned with our motivations, two general goals are constructed to evaluate
indoor human activity understanding on the collected LEMMA dataset: (i) rec-
ognize atomic-actions and their semantics; and (ii) understand the goal-directed
activities and monitor multiple concurrent tasks, especially in multi-agent sce-
narios. Specifically, we define two challenging benchmarks to test the capability
of understanding complex goal-directed activities for computer vision algorithms.

3.1 Compositional Action Recognition

Human indoor activities are composed of fine-grained action segments with rich
semantics. As mentioned by Goyal et al . [19], interactions with objects are highly
purposive. From the simplest verb of “put,” we can generate a plethora of com-
binations of objects and target places, such as “put cup onto table,” “put fork
into drawer.” Situations could become even more challenging when objects were
used as tools; for example, “put meat into pan using fork.”

Motivated by the above observation, we propose the compositional action
recognition benchmark on the collected LEMMA dataset with each object at-
tributed to a specific semantic position in the action label. Specifically, we build
24 compositional action templates; see Fig. 5a for some examples. In these action
templates, each noun could denote an interacting object, a target or a source
location, or a tool used by a human agent to perform certain actions.

The proposed compositional action recognition benchmark is challenging; it
requires computational models to correctly detect the ongoing concurrent action
verbs as well as the nouns at their correct semantic positions. We evaluate model
performances by metrics on compositional action recognition in both FPVs and
TPVs. Specifically, the model is asked to predict (i) multiple labels in verb
recognition for concurrent actions (e.g ., “watch tv” and “drink with cup” at the
same time), and (ii) multiple labels in noun recognition for each semantic position
given verbs, representing the interactions with multiple objects using the same
action (e.g ., “wash spoon, cup using sink”). Fig. 5b shows the schematics of the
evaluation process. For training and testing on TPVs, we provide ground-truth
bounding boxes of humans as additional information on spatial localization.
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Put bread to plate with hand, knife
Get cup, spoon from table with hand
Pour milk into bowl with hand
Blend coffee with spoon
Drink milk with spoon, cup

Fill cup with kettle
Play games with controller

Turn off juicer with hand
Cut watermelon with knife

Turn on microwave with hand
Throw wrapping into trashcan
Point to cereal

Sit on sofa
Switch with remote
Watch TV
Open fridge

Targets Location ToolAction

(a) Compositional action templates

GT: Put watermelon to juicer with knife
Cut watermelon with knife

PR: Get knife, watermelon from table with hand
Cut watermelon with knife

Put Get Cut

... 1 0 … 1 …GT

... 0fn 1fp … 1tp …PR

... 0 … 1 … …GT

... 1fp … 1tp … …PR

Watermelon

... 0 … 1 … …

... 0 … 1tp … …

WatermelonKnife Knife

0 … 1 … … …GT
1fp … 0fn … … …PR

Juicer

0 … 0 … … …
0 … 0 … … …

JuicerTable Table

… 1 … … … 0GT
… 0fn … … … 1fpPR

Hand

… 1 … … … 0
… 1tp … … … 0

Knife Hand Knife

Action

Target

Location

Tool

(b) Prediction of verbs and nouns

Fig. 5: Compositional action recognition benchmark on LEMMA. (a) Examples
of Compositional action templates. Yellow denotes verbs. Blue, green, and brown
denote nouns for an interacting object, target/source location, and tool, respec-
tively. (b) Examples of predictions of the verbs and nouns in compositional action
recognition. Verbs and nouns are evaluated through multi-label classification.

3.2 Action and Task Anticipation

As emphasized throughout the paper, the most significant factor of human ac-
tivities is the goal-directed, teleological stand. An in-depth understanding of
goal-directed tasks demands a predictive ability of latent goals, action prefer-
ences, and potential outcomes. To tackle these challenges, we propose the action
and task anticipation benchmark on the collected LEMMA dataset. Specifically,
we evaluate model performances for the anticipation (i.e., predictions for the
next action segment) of action and task with both FPV and TPV videos.

This benchmark provides both the training and testing data in all four sce-
narios of activities to study the goal-directed multi-task multi-agent problem. As
there is an innate discrepancy of prediction difficulties among these four scenar-
ios, we gradually increase the overall prediction difficulty, akin to a curriculum
learning process, by setting the percentage of training videos to be 3/4, 1/4, 1/4,
and 1/4 for 1 ˆ 1, 1 ˆ 2, 2 ˆ 1 and 2 ˆ 2 scenarios, respectively. Intuitively, with
sufficient clean demonstrations of tasks in 1 ˆ 1 scenario, interpreting tasks in
more complex settings (i.e., 1 ˆ 2, 2 ˆ 1, and 2 ˆ 2) should be easier, thus re-
quiring less learning samples; such a design encourages the model to generalize.
The model performance is evaluated individually for each scenario.

4 Experiments

In this section, we conduct experiments on the two proposed benchmarks with
details on evaluation metrics, experimental settings, and baseline results. We
further discuss the results to highlight the underlying challenges of each task.
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4.1 Compositional Action Recognition

Experimental Setup: We randomly split all the video samples into training
and test sets with a ratio of 3:1, resulting in 243 recorded activities for training
and the remaining 81 for testing. Due to the multi-agent setup, each activity may
have multiple FPVs; 333 (out of 445) FPV videos are split into training. In TPVs,
the recordings of the primary view with the ground-truth human bounding box
annotations are given for both training and testing videos. Results are evaluated
on two separate sources of inputs: FPVs and TPVs.

Evaluation Metrics: Model performances are evaluated separately for verbs,
nouns, and compositional action recognition. Verb and compositional action
recognition are treated as multi-label classifications with 25 verb classes and 863
compositional action classes (including a “null” action). After generating multi-
hot labels for each semantic position in the presented verb, noun recognition
is evaluated as multi-label classification (64 object classes). Average precision,
recall, and F1-score for all predictions are reported on testing sets. During the
evaluation, we sample image frames at 5 FPS and evaluate on these frames.

Methods: We adopt two recent 3D-CNN networks, I3D [9] and SlowFast Net-
work [13], as the baseline models. The baseline models predict the compositional
action directly. Considering compositionality of verbs and nouns, we propose two
variants of the baseline models: (i) a multi-branch network (branching model)
that builds on the bottleneck layer of the backbone models to leverage both verb
and noun supervision, and (ii) a multi-step inference model (sequential model),
wherein verbs are first inferred with a beam search and then fed into object
inference with their verb embeddings for joint learning.

Implementation Details: The training procedure utilizes all annotated seg-
ments in the training set. Additionally, we re-scale all the images with the short
side to 256 pixels. To feed data into 3D-CNN models, 4 frames are first sampled
for each action segment as center frames, and an additional 8 frames are then
uniformly sampled around center frames with a window length of 32. We train
each model on 8 Titan RTX GPUs on a single computing node for 50 epochs
(20k iterations) with a batch size of 96. We use warm-up strategy and perform
large mini-batch batch normalization, as suggested in [18]. The learning rate is
initially set to 0.0125 for each parallel branch and decays with a cosine annealing.
Other settings of the backbone models are the same as in [13]. For the proposed
sequential model, we use the beam search with a size of 5 for action inference.
We extract bounding box features of humans with ROIAlign [22] for frames in
TPVs. More implementation details are provided in supplementary material.

Results and Discussion: Table 2 shows quantitative results of predicting
verbs, nouns, and compositional actions for the compositional action recogni-
tion task. For FPVs, rather than directly predicting the compositional actions
(baseline models), predicting the verbs and nouns with their semantic positions
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Table 2: Comparisons of compositional action recognition on LEMMA.

View
Type Method

Verb Noun Compositional Action
Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1

F
P

V

I3D 17.09 43.89 24.60 3.42 16.15 5.72 11.07 39.49 17.30
Slowfast 22.27 56.42 31.94 4.31 20.60 7.13 18.68 50.65 27.3

I3D sequential 25.04 57.00 34.80 19.36 75.29 30.80 18.00 50.04 26.47
Slowfast sequential 24.30 49.71 32.64 17.95 59.11 27.54 26.80 38.41 31.57

I3D branching 25.73 55.62 35.8 18.63 69.76 29.41 22.29 48.46 30.53
Slowfast branching 26.16 56.33 35.73 18.18 73.46 29.15 27.97 48.87 35.58

T
P

V

I3D 14.18 36.34 20.40 2.29 11.05 3.79 6.85 23.82 10.64
Slowfast 14.28 37.38 20.66 2.32 11.14 3.83 7.76 23.25 16.31

I3D sequential 16.17 30.17 21.05 7.79 25.41 11.93 2.23 12.67 3.79
Slowfast sequential 15.31 28.84 20.00 6.37 22.39 9.92 3.27 9.16 4.82

I3D branching 12.92 32.09 18.43 12.75 17.70 14.82 4.67 20.76 7.6
Slowfast branching 16.64 33.40 22.21 17.29 18.36 17.81 6.52 21.55 10.01

boosts the performance on all metrics, indicating that understanding the com-
positional structures of human actions indeed supports the prediction. We also
observe that the results of compositional action recognition in the sequential
models are slightly lower than the branching model due to the aggregated error
brought in by a relatively low precision („25%) of the verb recognition.

In comparison, the results of compositional action recognition in TPVs are
significantly lower than those in the FPVs due to severe occlusion. It also shows
that predicting the composition of verbs and nouns makes no significant im-
provement compared with predicting compositional action directly. Such a re-
sult implies that current models could not capture the details of compositions
between verbs and nouns from TPVs. Taken together, the results indicate that
fusion among the representations of visual embodiment between TPVs and FPVs
might be a crucial ingredient to tackle this problem in the future.

Fig. 6 shows qualitative results for the composed action recognition task.

4.2 Action and Task Anticipations

Experimental Setup: We split the training and test sets with ratios 3 : 1,
1 : 3, 1 : 3, 1 : 3 for the four scenarios 1 ˆ 1, 1 ˆ 2, 2 ˆ 1, 2 ˆ 2, respectively.
Such a spit results in training set with (96, 19, 16, 13) activities and a test set
with (31, 57, 50, 42) activities in four scenarios. During training and testing, the
computational models have access to both FPVs and TPVs, together with the
ground-truth human bounding boxes annotations of the TPV primary view.

Evaluation Metrics: Model performances are evaluated individually (per agent)
for the action and task anticipations task. Specifically, both action and task an-
ticipations are evaluated as multi-label classifications with 863 compositional
action classes (including a “null” action) and 15 task classes. Average precision,
recall, and F1-score are reported individually for each of the four scenarios on
the testing sets. Similar to the protocol used in the above compositional ac-
tion recognition task, we re-sample image frames at 5 FPS and evaluate these
sub-sampled frames during the testing phase.
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GT
PR

put meat to table with hand
put meat to table with hand

pour milk to cup with hand
pour milk to cup with hand

switch with Remote, Watch TV
switch with Remote, Watch TV

put vacuum to floor with hand
put vacuum to floor with hand

GT

PR

watch TV, sweep floor with vacuum
watch TV

pour tank to sink with hand
pour tank to sink with hand
fill tank with sink

wash juicer
wash juicer, turn-off sink with hand

play game with controller
play game with controller
switch with remote

Fig. 6: Qualitative results of compositional action recognition on LEMMA. From
top to bottom, we show correct predictions and failure examples. Red marks
wrong verb or noun predictions, green indicates correct verb or noun predictions.

Methods: We leverage the visual features extracted by the pre-trained SlowFast
model in compositional action recognition for baseline models. Specifically, we
compare two backbone models: (i) using segment-level recognition feature (SF)
directly by adding an MLP on top of the features, and (ii) using long-term feature
bank (LFB) with max pooling [58]. For activities with multi-agent interactions,
we use the other agent’s FPV features together with their own’s to capture
the joint task execution progress for learning and inference; these variants are
denoted as M-SF (FPV) and M-LFB (FPV) For comparison, we also use the
concatenation of the FPV feature and primary TPV feature as the input; the
corresponding models are denoted as M-SF (TPV) and M-LFB (TPV).

Implementation Details: For the LFB model, we use a history window size
of 10 and aggregate the features using max-pooling, as described in [58]. For
the multi-agent variants, we use max-pooling to fuse features of two views and
process them with a different branch as another temporal inference module. We
train models on a single Titan Xp GPU for 50 epochs with a learning rate of
0.001. See supplementary material for more details on network architectures.

Results and Discussion: Table 3 shows quantitative results of action and
task anticipation. The proposed multi-agent variants (M-) of baseline models
perform the best among all models. For single-agent activities (1 ˆ 1, 1 ˆ 2),
we have the following crucial observations. First, models that consider temporal
relations between frames generally perform better than the models using seg-
ment features. Second, adding additional TPV features to single-agent activities
slightly helps interpret the task being executed and therefore promotes anticipa-
tion. This result matches the intuition that computational models having access
to both FPVs and TPVs would perceive more holistic scene information. We also
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Table 3: Comparisons of the action and task anticipations on LEMMA.

Scenario Method
1 ˆ 1 1 ˆ 2 2 ˆ 1 2 ˆ 2

Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1 Avg.Prec Avg.Rec Avg.F1
C

om
p

o
si

ti
o
n
a
l

a
ct

io
n

SF 23.42 22.25 22.82 20.13 20.06 20.10 18.89 19.22 19.05 18.31 16.67 17.45
LFB 23.03 28.67 25.54 20.48 25.4 22.67 18.31 22.30 20.11 18.53 20.97 19.68

M-SF (TPV) 24.22 28.05 25.99 20.10 24.48 22.08 19.15 16.71 17.85 19.64 15.18 17.12
M-LFB (TPV) 23.54 37.81 29.01 21.10 31.86 25.39 19.67 21.03 20.33 20.11 20.30 20.15
M-SF (FPV) 23.30 25.41 24.31 21.34 23.18 22.22 19.70 17.46 18.51 19.82 15.8 17.58

M-LFB (FPV) 23.26 31.07 26.60 20.78 27.40 23.63 19.42 21.73 20.51 19.49 20.12 19.8

T
as

k

SF 50.53 79.08 61.66 48.07 67.78 56.25 39.05 57.43 46.49 44.88 62.09 52.1
LFB 57.57 84.31 68.42 52.12 68.94 59.36 38.40 53.08 44.56 48.17 64.61 55.19

M-SF (TPV) 58.61 79.96 67.05 55.45 67.24 60.78 45.73 58.98 51.51 49.66 64.47 56.10
M-LFB (TPV) 60.27 82.19 69.54 56.2 72.46 63.30 43.94 61.41 51.23 48.85 67.48 56.67
M-SF (FPV) 51.12 79.18 62.13 48.42 69.04 56.92 41.00 58.11 48.08 46.04 65.97 54.24

M-LFB (FPV) 55.56 82.83 66.51 52.22 70.01 59.82 41.33 64.49 50.38 46.65 69.59 55.86

find that the performances of task anticipation in the 1 ˆ 1 single-task scenario
are better than the one in the 1ˆ2 multi-task scenario, matching what we would
expect from more complicated task execution patterns.

For multi-agent activities (2 ˆ 1, 2 ˆ 2), we observe that the aggregation
of FPV and TPV features generally performs better. It supports our hypoth-
esis that observing the other agents’ actions helps the computational models
to “understand” task scheduling and assignment. We also observe that, mod-
els’ performances in 2 ˆ 1 activities are slightly worse than in 2 ˆ 2 activities.
We hypothesize that task plans in the 2 ˆ 2 scenarios change less frequently,
with a clear task assignment coordinates the individual tasks. In comparison, in
the 2 ˆ 1 scenarios, the sequential ordering of the task requires more frequent
communications between agents to coordinate. Such a performance gap calls for
better modeling of multi-agent task assignments. Due to the page limit, we show
qualitative results of action and task anticipation in the supplementary material.

5 Conclusions

In this paper, we introduce the LEMMA dataset with a focus on natural multi-
agent multi-task daily activities. Dense annotations are provided on both com-
positional action and task for learning and inference on four different activity
scenarios with increasing difficulty. Additionally, we propose two challenging
tasks on LEMMA to measure existing models’ competence in action under-
standing and temporal reasoning: (i) compositional action recognition, and (ii)
action/task anticipations. We hope this effort would attract the computer vision
community to look into natural and realistic goal-directed human activities and
further study the task scheduling and assignment in real-world scenarios.
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15. Gergely, G., Bekkering, H., Király, I.: Rational imitation in preverbal infants. Na-
ture 415(6873), 755–755 (2002)

16. Girdhar, R., Ramanan, D.: Cater: A diagnostic dataset for compositional actions
and temporal reasoning. International Conference on Learning Representations
(ICLR) (2020)

17. Goodman, N.D., Frank, M.C.: Pragmatic language interpretation as probabilistic
inference. Trends in cognitive sciences 20(11), 818–829 (2016)



16 Baoxiong Jia et al.

18. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

19. Goyal, R., Kahou, S.E., Michalski, V., Materzynska, J., Westphal, S., Kim, H.,
Haenel, V., Fruend, I., Yianilos, P., Mueller-Freitag, M., et al.: The ”something
something” video database for learning and evaluating visual common sense. In:
Proceedings of International Conference on Computer Vision (ICCV) (2017)

20. Grice, H.P.: Logic and conversation. In: Speech acts, pp. 41–58. Brill (1975)

21. Gu, C., Sun, C., Ross, D.A., Vondrick, C., Pantofaru, C., Li, Y., Vijayanarasimhan,
S., Toderici, G., Ricco, S., Sukthankar, R., et al.: Ava: A video dataset of spatio-
temporally localized atomic visual actions. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2018)

22. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of In-
ternational Conference on Computer Vision (ICCV) (2017)

23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

24. Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical
deep temporal model for group activity recognition. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

25. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3. 6m: Large scale
datasets and predictive methods for 3d human sensing in natural environments.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) 36(7),
1325–1339 (2013)

26. Johansson, G.: Visual perception of biological motion and a model for its analysis.
Perception & psychophysics 14(2), 201–211 (1973)

27. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-
scale video classification with convolutional neural networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

28. Kleiman-Weiner, M., Ho, M.K., Austerweil, J.L., Littman, M.L., Tenenbaum, J.B.:
Coordinate to cooperate or compete: abstract goals and joint intentions in social
interaction. In: Proceedings of the Annual Meeting of the Cognitive Science Society
(CogSci) (2016)

29. Koppula, H.S., Gupta, R., Saxena, A.: Learning human activities and object af-
fordances from rgb-d videos. International Journal of Robotics Research (IJRR)
32(8), 951–970 (2013)

30. Kuehne, H., Arslan, A., Serre, T.: The language of actions: Recovering the syn-
tax and semantics of goal-directed human activities. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

31. Land, M., Mennie, N., Rusted, J.: The roles of vision and eye movements in the
control of activities of daily living. Perception 28(11), 1311–1328 (1999)

32. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Proceedings
of Computer Graphics Forum (2007)

33. Li, W., Zhang, Z., Liu, Z.: Action recognition based on a bag of 3d points. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2010)

34. Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: Joint learning of gaze and actions
in first person video. In: Proceedings of European Conference on Computer Vision
(ECCV) (2018)



A Multi-view Dataset for LEarning Multi-agent Multi-task Activities 17

35. Monfort, M., Andonian, A., Zhou, B., Ramakrishnan, K., Bargal, S.A., Yan, T.,
Brown, L., Fan, Q., Gutfruend, D., Vondrick, C., et al.: Moments in time dataset:
one million videos for event understanding. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI) (2019)

36. Monsell, S.: Task switching. Trends in cognitive sciences 7(3), 134–140 (2003)
37. Oh, S., Hoogs, A., Perera, A., Cuntoor, N., Chen, C.C., Lee, J.T., Mukherjee,

S., Aggarwal, J., Lee, H., Davis, L., et al.: A large-scale benchmark dataset for
event recognition in surveillance video. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2011)

38. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: Mod-
eling social behavior for multi-target tracking. In: Proceedings of International
Conference on Computer Vision (ICCV) (2009)

39. Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person
camera views. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2012)

40. Ramanathan, V., Huang, J., Abu-El-Haija, S., Gorban, A., Murphy, K., Fei-Fei,
L.: Detecting events and key actors in multi-person videos. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

41. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. In: Proceedings of Advances in Neural In-
formation Processing Systems (NeurIPS) (2015)

42. Rohrbach, M., Amin, S., Andriluka, M., Schiele, B.: A database for fine grained
activity detection of cooking activities. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2012)

43. Rohrbach, M., Rohrbach, A., Regneri, M., Amin, S., Andriluka, M., Pinkal, M.,
Schiele, B.: Recognizing fine-grained and composite activities using hand-centric
features and script data. International Journal of Computer Vision (IJCV) 119(3),
346–373 (2016)

44. Rubinstein, J.S., Meyer, D.E., Evans, J.E.: Executive control of cognitive processes
in task switching. Journal of experimental psychology: human perception and per-
formance 27(4), 763 (2001)

45. Savva, M., Chang, A.X., Hanrahan, P., Fisher, M., Nießner, M.: Pigraphs: learning
interaction snapshots from observations. ACM Transactions on Graphics (TOG)
35(4), 1–12 (2016)

46. Shu, T., Xie, D., Rothrock, B., Todorovic, S., Chun Zhu, S.: Joint inference of
groups, events and human roles in aerial videos. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR) (2015)

47. Sigurdsson, G.A., Gupta, A., Schmid, C., Farhadi, A., Alahari, K.: Charades-
ego: A large-scale dataset of paired third and first person videos. arXiv preprint
arXiv:1804.09626 (2018)

48. Sigurdsson, G.A., Varol, G., Wang, X., Farhadi, A., Laptev, I., Gupta, A.: Hol-
lywood in homes: Crowdsourcing data collection for activity understanding. In:
Proceedings of European Conference on Computer Vision (ECCV) (2016)

49. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes
from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

50. Stein, S., McKenna, S.J.: Combining embedded accelerometers with computer vi-
sion for recognizing food preparation activities. In: ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies (2013)

51. Tang, Y., Ding, D., Rao, Y., Zheng, Y., Zhang, D., Zhao, L., Lu, J., Zhou, J.:
Coin: A large-scale dataset for comprehensive instructional video analysis. In: Pro-



18 Baoxiong Jia et al.

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2019)

52. Tapaswi, M., Zhu, Y., Stiefelhagen, R., Torralba, A., Urtasun, R., Fidler, S.:
Movieqa: Understanding stories in movies through question-answering. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2016)

53. Toyer, S., Cherian, A., Han, T., Gould, S.: Human pose forecasting via deep markov
models. In: International Conference on Digital Image Computing: Techniques and
Applications (DICTA) (2017)

54. Turaga, P., Chellappa, R., Subrahmanian, V.S., Udrea, O.: Machine recognition of
human activities: A survey. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 18(11), 1473–1488 (2008)

55. Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P., et al.: Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature 575(7782), 350–354
(2019)

56. Vondrick, C., Patterson, D., Ramanan, D.: Efficiently scaling up crowdsourced
video annotation. International Journal of Computer Vision (IJCV) 101(1), 184–
204 (2013)

57. Woodward, A.L.: Infants selectively encode the goal object of an actor’s reach.
Cognition 69(1), 1–34 (1998)

58. Wu, C.Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl, P., Girshick, R.: Long-
term feature banks for detailed video understanding. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

59. Wu, C., Zhang, J., Savarese, S., Saxena, A.: Watch-n-patch: Unsupervised un-
derstanding of actions and relations. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2015)

60. Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori, G., Fei-Fei, L.: Every
moment counts: Dense detailed labeling of actions in complex videos. International
Journal of Computer Vision (IJCV) 126(2-4), 375–389 (2018)

61. Zhou, L., Xu, C., Corso, J.J.: Towards automatic learning of procedures from web
instructional videos. In: Proceedings of AAAI Conference on Artificial Intelligence
(AAAI) (2018)


	LEMMA: A Multi-view Dataset for LEarning Multi-agent Multi-task Activities

