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Abstract— Autonomous manipulation of articulated objects
remains a fundamental challenge for robots in human envi-
ronments. Vision-based methods can infer hidden kinematics
but can yield imprecise estimates on unfamiliar objects. Tactile
approaches achieve robust control through contact feedback
but require accurate initialization. This suggests a natural
synergy: vision for global guidance, touch for local precision.
Yet no framework systematically exploits this complementarity
for generalized articulated manipulation. Here we present Vi-
TacMan, which uses vision to propose grasps and coarse
directions that seed a tactile controller for precise execution.
By incorporating surface normals as geometric priors and
modeling directions via von Mises-Fisher (vMF) distributions,
our approach achieves significant gains over baselines (all
p<0.0001). Critically, manipulation succeeds without explicit
kinematic models—the tactile controller refines coarse visual
estimates through real-time contact regulation. Tests on more
than 50,000 simulated and diverse real-world objects confirm
robust cross-category generalization. This work establishes
that coarse visual cues suffice for reliable manipulation when
coupled with tactile feedback, offering a scalable paradigm for
autonomous systems in unstructured environments.

I. INTRODUCTION

Household robots must master articulated object manip-
ulation to function effectively in human environments, yet
face enormous diversity in object appearance, geometry, and
kinematics [1–4]. Unlike structured industrial settings where
objects are standardized, everyday articulated structures—
cabinets, refrigerators, ovens—exhibit vast variability that
renders precise a priori modeling impractical [5]. This vari-
ability poses a fundamental challenge: reliable manipulation
requires both accurate localization of interaction points and
precise execution of kinematically-constrained motions. The
question then becomes: which sensory modality is best suited
to address each aspect of this challenge?
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Fig. 1: Overview of Vi-TacMan. Vi-TacMan exploits the com-
plementary strengths of vision and touch for manipulating unseen
articulated objects. Vision provides global context to propose grasps
and estimate coarse interaction directions, which initialize a tactile
controller that leverages local contact feedback for precise and
robust execution.

Dominant approaches rely on vision to reconstruct object
kinematics for manipulation planning [6–13]. Vision’s global
receptive field makes it well-suited for identifying interaction
points across the entire object. However, articulation mech-
anisms are typically hidden within object interiors, forcing
vision systems to infer kinematics from limited surface ob-
servations. This inverse problem proves brittle on unfamiliar
objects: even state-of-the-art methods trained on large-scale
datasets [1, 2, 4] produce imprecise kinematic estimates that
fail during execution—particularly problematic in safety-
critical home environments where reliability is paramount.

Recent tactile methods offer an alternative paradigm [14,
15]: rather than recovering precise kinematics, they maintain
successful manipulation through continuous contact regula-
tion. By directly sensing contact geometry, tactile feedback
provides rich local information that vision cannot access.
Critically, these approaches demonstrate that stable contact
feedback enables reliable execution given only coarse initial
conditions—a feasible grasp and approximate motion direc-
tion. This insight reframes the vision problem: precise kine-
matic recovery is unnecessary if vision provides sufficient
cues to initialize tactile control. The natural division of labor
emerges: vision for global, coarse guidance; touch for local,
precise execution.

We present Vi-TacMan, a systematic framework exploiting
this complementarity. Vision detects movable and holdable
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parts, proposes grasps, and estimates coarse interaction di-
rections; tactile feedback then refines execution through
real-time contact regulation (Fig. 1). Three key technical
components enable robust generalization to unseen objects.
First, we incorporate surface normals as geometric priors
for direction estimation, providing physical constraints that
significantly improve performance (p<0.0001). Second, rec-
ognizing that multiple plausible directions may exist for
unfamiliar objects, we model directional uncertainty via von
Mises-Fishers (vMFs) on the unit sphere [16], enabling
principled inference under ambiguity. Third, our detector
achieves 0.86 mAP [17], reliably identifying interaction
regions even in complex multi-part objects. Together, these
components provide the sufficient initialization required by
tactile control.

Our contributions are:
‚ We present Vi-TacMan, a vision-touch framework where

coarse visual guidance activates precise tactile control for
articulated manipulation.

‚ We develop a robust detection model achieving 0.86
mAP [17] that identifies movable and holdable parts in
complex multi-component objects.

‚ We incorporate surface normals as geometric priors for di-
rection estimation, yielding significant gains over baselines
(all p<0.0001).

‚ We apply von Mises-Fisher (vMF) distributions to model
directional uncertainty on the unit sphere, enabling princi-
pled inference under ambiguity.

‚ We validate our approach on over 50,000 simulations and
diverse real objects, demonstrating reliable manipulation
without explicit kinematic models.
The remainder of this paper is organized as follows: Sec. II

presents our systematic approach to articulated object manip-
ulation using vision and touch, with implementation details
provided in Sec. III. The proposed approach is empirically
validated in Sec. IV and concluded in Sec. V.

II. THE VI-TACMAN FRAMEWORK

In this section, we present Vi-TacMan, a systematic frame-
work for manipulating articulated objects by integrating
vision and touch. We first introduce the contact-regulation
methods that motivate our framework in Sec. II-A. These
methods require a stable grasp and a coarse direction estimate
as initialization. To address these requirements, we formulate
the problem as a maximum a posteriori (MAP) estimation
task, decomposed into two tractable components in Sec. II-
B. Finally, we describe our approach for estimating a dis-
tribution over coarse motion directions without constraining
the solution to specific articulation types in Sec. II-C.

A. Background: Contact-Regulating Methods

Recent advances in articulated object manipulation
demonstrate that kinematic priors are not strictly necessary
if the robot regulates contact through tactile sensing [14, 15].
Given a coarse interaction direction, these methods iteratively
adjust the end-effector pose by a transformation T∆ P SEp3q

such that the resulting contact returns to a stable state.
Formally, the update is computed as

T∆ “ argmin
T∆PSEp3q

fpC0, Ct`1q, (1)

where C0 denotes the reference contact, Ct`1 the contact after
applying T∆, and fp¨, ¨q a metric measuring their difference.
By maintaining contact stability rather than tracking kine-
matic models, this formulation naturally handles objects with
unknown or imprecisely estimated kinematics.

This kinematic-invariant property is precisely what enables
reliable manipulation across diverse objects: vision modules
need not recover error-prone hidden kinematics. However,
successful execution requires two (i) a proper grasp that
establishes stable contact and (ii) a coarse interaction direc-
tion to trigger the controller. Our framework addresses these
requirements through principled visual inference.

B. Problem Formulation

Contact-regulating methods assume the availability of an
initial stable grasp and a coarse interaction direction. Given
visual observation V , our goal is to recover these prerequi-
sites by estimating:
‚ A parallel-gripper grasp G P SEp3q ˆ R, where the
SEp3q component specifies the gripper pose and the scalar
encodes the gripper width.

‚ An interaction direction d P S2, representing a unit vector
on the 2-sphere.

Together, pG,dq provide the initialization required for
contact-regulation control.

In our setting, the visual observation consists of visually
observable points V “ tPi|i “ 1, . . . , nu, where each point
Pi is represented by:

P “ pp, c,n,m, hq. (2)
As illustrated in Fig. 2, p P R3 denotes the 3D position in
the camera frame, and c P r0, 255s3 represents RGB color.
The surface normal n P S2 provides geometric constraints
that guide direction estimation beyond random guessing—
a hypothesis we validate experimentally. The label m P N
specifies whether the point is movable (m ą 0) or fixed
(m “ 0), with different positive values corresponding to
distinct movable parts within a single object. Similarly, h P

N indicates whether the point provides a viable holdable

RGB-D with surface normals Instance-level semantic masks

Fig. 2: Inputs to the vision module of Vi-TacMan. The vision
module of Vi-TacMan processes RGB-D data from a depth sensor,
surface normals computed from the depth map (visualized as a nor-
mal map), and instance-level semantic masks identifying holdable
and movable parts. This representation accommodates objects with
multiple interactable components. Note: Holdable masks are subsets
of their associated movable masks; regions appear overlapped in the
visualization.
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Fig. 3: Coupling between grasp point and interaction direction.
The interaction direction depends on the selected grasp point even
when the same rigid transformation is applied. Different point
selections yield different directions under identical transformations.

location (h ą 0) associated with a specific movable part.
While position and color are obtained directly from depth
sensing, the remaining attributes are inferred from them, as
detailed in Sec. III-B.

Formally, we seek to obtain:
G˚,d˚

“ argmax
G,d

ppG,d|Vq, (3)

where pp¨q represents a probability density function (PDF).
Directly modeling the joint density ppG,d|Vq is challeng-

ing, yet treating G and d as conditionally independent is not
justified. As illustrated in Fig. 3, the interaction direction
depends on the grasp point g P R3 determined by G: even
under the same rigid transformation, different grasp locations
yield different directions.

We make the problem tractable by modeling the rigid
transformation T “ rR P SOp3q|t P R3s P SEp3q, which is
independent of the specific grasping point. We then recover
the interaction direction from T and point position p via:

d “
pR ´ Iqp ` t

}pR ´ Iqp ` t}2
, (4)

where I is the 3 ˆ 3 identity matrix. Then Eq. (3) can be
reformulated as:

G˚, T˚ “ argmax
G,T

ppG,T |Vq (5)

“ argmax
G

ppG|Vq

grasp

argmax
T

ppT |Vq

direction

, (6)

where ppG|Vq and ppT |Vq separately model grasp selection
and transformation estimation. Since parallel-jaw grasping
is well-studied and does not affect T estimation, we defer
implementation details to Sec. III-C. The remainder of this
section focuses on estimating the transformation distribution
ppT |Vq, which determines the interaction direction.

C. Vision-Based Direction Estimation

We detail our method for estimating the rigid transforma-
tion of a movable part from visual inputs. Unlike prior meth-
ods restricted to specific joint types such as revolute or pris-
matic joints, our approach makes no such assumption. Real-
world articulated objects often deviate from these idealized
models [14], and although current datasets underrepresent
such complexity, our method is designed to accommodate it.

Without assuming a predefined kinematic structure, we
adopt a numerical approach to infer the rigid transformation.
We introduce small perturbations to the movable part and
analyze the resulting displacement patterns of associated
points pi between consecutive frames. Each point acquires
a displacement vector qi P R3 determined by T :

qi “ T

„

pi

1

ȷ

´ pi. (7)

With sufficient point-displacement pairs ppi, qiq, we effi-
ciently solve for T using the Kabsch algorithm [18].

Under rigid-body assumption, every sub-part within the
movable component undergoes the same transformation.
Evaluating Eq. (7) with different point combinations there-
fore provides insight into the conditional probability distri-
bution ppT |Vq. In an idealized scenario with perfect obser-
vations and strictly rigid motion, this distribution would col-
lapse to a Dirac delta at the true transformation. Real-world
conditions—noise, partial visibility, object complexity—
introduce ambiguities that yield multiple plausible motion
directions. This approach thus captures and represents un-
certainties inherent in the vision-based model ppT |Vq.

With grasp point g chosen to maximize the first term in
Eq. (6), we map each candidate transformation T to its corre-
sponding interaction direction d deterministically via Eq. (4).
This mapping induces a distribution over directions ppd|Vq

from the underlying ppT |Vq. To model this distribution on
the unit sphere S2, we fit a vMF distribution to the sampled
directions tdiu

n
i“1. The vMF distribution is formulated as:

ppd|Vq “
1

cpκ,µq
exp

`

κµTd
˘

, d P S2. (8)

Analogous to a Gaussian distribution in Euclidean space,
the vMF distribution employs two parameters: a mean
direction µ P S2 specifying the central location, and a
concentration parameter κ P Rą0 controlling how tightly
the distribution clusters around µ. The normalizing constant
cpκ,µq ensures that ppd|Vq integrates to one over S2.

Since the normalizing constant and κ do not affect the
maximizer, we obtain:

argmax
dPS2

ppd|Vq “ argmax
dPS2

exp
`

µTd
˘

. (9)

The density is maximized when d aligns with µ. We
estimate µ by computing the Fréchet mean of sampled
directions under the geodesic metric (arc length) on the
sphere, yielding an unbiased estimator:

d˚
“ µ̂ “ argmin

µPS2

n
ÿ

i“1

ˇ

ˇarccos
`

µTdi

˘
ˇ

ˇ

2
. (10)

III. IMPLEMENTATION

In this section, we describe the implementation details
of Vi-TacMan. We first introduce the dataset in Sec. III-A,
which enables detection of movable and holdable parts in
Sec. III-B. We then explain how to leverage sampling-based
models for stable grasping, followed by learning-based ac-
quisition of point displacements using the established dataset
in Sec. III-D, which is critical for recovering interaction
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Fig. 4: Real-world articulated objects and processing pipeline.
(a) We evaluate Vi-TacMan on real-world objects spanning diverse
configurations: prismatic to revolute joints, and single-part to multi-
part structures. (b) Our trained detector reliably identifies movable
and holdable parts, even in complex multi-part cases. (c) These
detections provide prompts for the segmentation model, enabling
fine-grained part segmentation. (d) Based on segmented parts, suit-
able grasps are generated at grasping points g. These results provide
the necessary information for inferring interaction directions.

directions. Finally, we present the tactile control policy in
Sec. III-E.

A. Dataset Preparation

We construct a dataset to support learning-based extraction
of movable and holdable features and direction estimation.
We select 385 articulated objects spanning eight categories
from the PartNet-Mobility dataset [1] and import them into
the SAPIEN simulator, rendering them in ray tracing mode
from up to 72 viewpoints. This process captures the color and
positional information defined in Eq. (2). Surface normals are
estimated by computing the cross product of vectors formed
from each point and its neighbors to the right and below in
image space. Movable and holdable instance labels m and h
are obtained from GAPartNet annotations [19].

The dataset is divided at the category level: microwaves,
refrigerators, storage furniture, and trash cans are assigned to
the training set, while dishwashers, doors, ovens, and tables
are reserved for testing. Within the training portion, we split
data into training and validation subsets using an 8:2 ratio,
yielding 39,524 training samples, 9,881 validation samples,
and 5,836 test samples.

To evaluate performance beyond simulation, we collect
four real-world examples, each captured from five viewpoints
using a Femto Bolt depth sensor. One view is illustrated

Fig. 5: Depth refinement using foundation models. We leverage
a depth foundation model [20] to refine raw depth measurements
from the image sensor. Left: raw depth. Right: refined depth. Both
visualizations use the same colorbar range for comparability.

in Fig. 4(a); additional results appear in the supplementary
video. These examples capture real-world diversity, including
objects with single and multiple movable parts, and are re-
served strictly for testing [20]. To improve depth quality, we
first estimate a relative depth map using a depth foundation
model [20]. Since this estimate lacks an absolute scale, we
recover the correct scale by fitting a linear model between
estimated disparities and ground-truth sensor measurements
using RANSAC for robustness. The enhancement is illus-
trated in Fig. 5.

B. Movable and Holdable Part Segmentation

Using the prepared data from Sec. III-A, we derive the
movable and holdable masks defined in Eq. (2), which serve
as key inputs to our vision module. We train an object
detector with a DINOv3 backbone and transformer-based
head to detect movable and holdable parts [21, 22]. The
model is trained using the AdamW optimizer on a single
H100 GPU with batch size 2 and learning rate 6 ˆ 10´6.
Following the protocol suggested by Lin et al. [17], we
report mean Average Precision across IoU thresholds from
0.50 to 0.95 (mAP@[0.50:0.95]). The model attains 0.86
mAP on the test set; detailed breakdowns appear in Tab. I.
Since mAP above 0.6 in multi-class settings is typically
considered practically useful [17] and detection is not our
primary contribution, we provide the model and checkpoints
in code rather than extensive baseline comparisons.

TABLE I: Detection performance on the test set.

mAP AP(50) AP(75) AP(S) AP(M) AP(L)

0.86 0.97 0.94 0.66 0.86 0.94

Detector outputs are passed to SAM2 [23] to produce final
movable and holdable masks on an RTX 3090 GPU. We
associate each holdable part with its corresponding movable
part by selecting the pair whose mask intersection has the
largest area. Real-world results are presented in Fig. 4(b)–(c)
for illustration.

C. Grasp Selection

With movable and holdable masks defined, we establish
a stable grasp on the handle. Recent advances demonstrate
the effectiveness of parallel grippers for object grasping,
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Fig. 6: Fabrication process for GelSight-style tactile sensor
elastomer. We use Smooth-On Solaris silicone as the base elas-
tomer. Marker placement is standardized using a laser-cut stencil
to ensure uniform spacing and geometry. The Lambertian coating
and protective topcoat are applied via airbrush.

even in cluttered environments [24–26]. The handle-grasping
problem is largely simplified in our setting. We adopt a
sampling-based method similar to Ten et al. [27], restricting
the grasp region to the holdable area. The grasping point g is
defined as the centroid of this region, which determines the
gripper translation. We sample gripper rotations to identify
one yielding a collision-free grasp with minimal gripper
width. Considering the symmetry of the parallel gripper, we
select the pose closest to the robot’s home position [28].
Qualitative examples appear in Fig. 4(d).

D. Vision-Based Displacement Estimation

We estimate the displacement flow from visual inputs
defined in Eq. (7) using a neural network based on Point-
Net++ [29]. The network takes point coordinates as input and
augments them with surface normals in the movable region,
along with movable masks as additional features.

Training uses the loss:

L “
1

n

n
ÿ

i“1

}q̂i ´ qi}1

}qi}1

magnitude

`
1

n

n
ÿ

i“1

˜

1 ´
q̂T
i qi

}q̂i}2}qi}2

¸

direction

, (11)

where n is the number of points and q̂i is the network’s esti-
mate. The first term penalizes magnitude error using relative
ℓ1 loss, which stabilizes optimization across a wide dynamic
range and drives equal absolute errors toward zero regardless
of scale. This is important because small displacements
arise both outside masks and within masked regions near
rotation axes. The second term aligns predicted and target
directions via cosine similarity, ensuring accurate orientation
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Fig. 7: Quantitative results of direction estimation on unseen
object categories. Prediction errors from four methods over 5,836
test samples drawn from categories not seen during training. Vi-
TacMan, which uses surface normals as an inductive bias, achieves
significant performance gains over baselines. The violin plots show
error distributions: the outer shape is the kernel density estimate
(KDE); the white dot is the median; the thick bar denotes the
interquartile range (IQR); and the whiskers extend to 1.5ˆ IQR
beyond the quartiles. Note: **** indicates p ă 0.0001.

even when magnitudes are small. The model is trained using
the AdamW optimizer on a single H100 GPU with a batch
size of 32 and a learning rate of 1 ˆ 10´3. Inference is
performed on an RTX 3090 GPU for all experiments.

E. Tactile Manipulation Policy

Following initialization by the estimated grasp and inter-
action direction, all subsequent manipulation is governed
by a tactile-based policy. We employ a tactile controller
to manipulate articulated objects, building on the work of
Zhao et al. [14, 15], which utilizes a GelSight-style tactile
sensor [30] to provide contact feedback. This approach
extracts tactile features from the positions of activated mark-
ers—defined as those whose normal deformation exceeds
a predefined threshold. By tracking marker-wise position
changes, the controller computes pose updates (Eq. (1)) via a
point registration algorithm operating at 50 Hz. For complete
algorithmic details, we refer readers to the original work due
to space constraints.

While GelSight-style sensors are widely adopted and their
mechanical design and calibration are well documented [30–
33], fabrication of the core component—the elastomer with
Lambertian coating—appears to remain lab-specific. To im-
prove reproducibility, we detail one practical fabrication
procedure used in this study in Fig. 6. The airbrushable
silicone pigment is prepared by mixing silicone pigment
with Smooth-On Psycho Paint (a platinum-silicone paint
base) and thinning the mixture using Smooth-On NOVOCS
Matte solvent. This enables uniform spray application and
consistent elastomer finishes suitable for tactile imaging.

IV. EXPERIMENTS

This section evaluates Vi-TacMan through comprehensive
experiments. We begin with large-scale tests on synthetic
objects in Sec. IV-A to assess generalization across unseen
categories. We then validate Vi-TacMan in the real world
(Sec. IV-B), demonstrating the complete pipeline for manip-
ulating unknown articulated objects via vision and touch.



vFM

vFM

vFM

vFM

FlowBot3D Normal-only

w/o normal w/ normal

FlowBot3D Normal-only

w/o normal w/ normal

Oven

Dish washer

Real-world objects

Table

Door

FlowBot3D Normal-only

w/o normal w/ normal

FlowBot3D Normal-only

w/o normal w/ normal

Samples Ground truth FlowBot3D
Prediction Ground truth

Normal-only
w/o normal w/ normal

Fig. 8: Qualitative results of direction estimation on unseen
object categories. We illustrate the approach using four repre-
sentative objects, one from each test category. For each object,
we show the obtained samples, the fitted vMF distribution, the
ground truth, and predictions from the three baseline methods.
By fitting the distribution and incorporating surface normals as
an inductive bias, Vi-TacMan demonstrates greater robustness to
high uncertainty when encountering previously unseen objects.
The bottom row presents results on real-world examples using
the grasping points shown in Fig. 4(d), demonstrating successful
transfer from simulation to real-world settings.

A. Simulation Studies

We evaluate interaction-direction estimation using 5,836
test samples from categories unseen during training, as
introduced in Sec. III-A. This setup allows us to assess
generalization to previously unknown articulated objects. We
compare Vi-TacMan, which leverages surface normals as an
important inductive bias, against three baselines:
‚ FlowBot3D: A recent method for articulated object manip-

ulation that employs point-displacement modeling similar
to ours [34]. It selects the interaction direction that max-

Kinova Gen3 7-DoF arm

Femto Bolt RGBD sensor

View of the tactile senor

GelSight-type tactile senor

Object to be manipulated

Fig. 9: Experimental platform for real-world validation.

imizes articulation movement without modeling the full
direction distribution.

‚ Normal-only: A simple, learning-free baseline that com-
putes the Fréchet mean (see Eq. (10)) of surface normals
within the moving region.

‚ Without-normal: An ablation that trains our model with-
out surface-normal inputs while keeping all other compo-
nents unchanged, isolating the contribution of this feature.
For fair comparison, we set the grasping point as the

movable region’s centroid for both the Vi-TacMan and the
Without-normal baseline. For FlowBot3D and Normal-only,
we translate predictions to grasping points for comparison.

Quantitative results are shown in Fig. 7, where prediction

Contact maintainedInitial stable contact
Fig. 10: Real-world validation of Vi-TacMan. Leveraging visual
cues, the robot automatically establishes stable contact with the
handle of the articulated object. Following the estimated interaction
direction, the low-level, tactile-informed controller reliably com-
pletes the manipulation.



error is measured as the angle between predicted and ground-
truth directions. All four methods achieve median errors
around 10°, highlighting the challenge of recovering precise
motion directions on unfamiliar geometries. FlowBot3D,
without modeling the distribution of point displacements,
shows greater sensitivity to unseen categories. The Normal-
only baseline, despite its simplicity, achieves competitive
performance. Vi-TacMan reduces uncertainty by modeling
the distribution of fitted normals, and explicitly incorporating
surface normals further improves performance. One-sided
paired t-tests confirm statistically significant improvements
over all three baselines (p ă 0.0001).

For qualitative illustration, Fig. 8 shows four representative
objects from the test categories, visualizing sample directions
alongside the corresponding fitted vMF distributions.

B. Real-World Experiments

To assess the gap between synthetic objects and real-
world scenarios, we evaluate our model on physical objects
captured in the real world, as shown in Fig. 4(a). Using
the selected grasping points in Fig. 4(d), we present four
representative examples in Fig. 8, demonstrating that Vi-
TacMan generates plausible interaction direction estimates.

To further assess whether visual cues alone can drive
complete manipulation of articulated objects, we implement
the full pipeline in the real world, from vision-based high-
level guidance to tactile-informed low-level control. We use a
Kinova Gen3 7-DoF arm equipped with GelSight-type tactile
sensors in place of its default gripper pads, as described in
Sec. III-E. The integrated system is illustrated in Fig. 9.

As shown in Fig. 10, Vi-TacMan guides the robot to
reliably establish valid grasps on real objects and follow
the estimated interaction direction. By leveraging tactile
feedback, the system adapts its motions in real time (50 Hz),
achieving consistent and robust manipulation across all artic-
ulated objects. The complete manipulation process and addi-
tional experimental results are provided in the supplementary
materials and on our website.

V. CONCLUSION AND FUTURE WORK

We introduced Vi-TacMan, a framework for articulated ob-
ject manipulation that leverages the complementary strengths
of vision and touch. Rather than inferring precise but
unreliable kinematics from vision alone, Vi-TacMan uses
vision for coarse guidance—grasp proposals and interaction
direction estimates—while relying on tactile feedback for
robust execution. By incorporating surface normals as a
geometric prior and modeling interaction directions with a
vMF distribution, Vi-TacMan generalizes to unseen objects
and outperforms existing baselines. Our evaluations demon-
strate that Vi-TacMan enables autonomous manipulation of
diverse articulated objects without explicit kinematic models,
highlighting the value of integrating visual guidance with
tactile control.

Interpretability through hierarchical design: A key
advantage of Vi-TacMan’s hierarchical architecture—which

separates visual intention from tactile execution—is its in-
herent interpretability. Unlike end-to-end policies that map
pixels directly to actions, our system explicitly generates
a coarse interaction direction d and grasp G before con-
tact is made. This intermediate representation serves as a
communicable “intention” that could be exposed to human
users in future iterations. For instance, augmented reality
projections of the intended trajectory or verbal announce-
ments (e.g., “Opening cabinet”) prior to execution would
foster safer, more predictable human-robot interaction and
simplify debugging for safety certification in unstructured
domestic environments.

Extending to non-rigid and multi-modal scenarios:
Our current formulation leverages the Kabsch algorithm un-
der a strict rigid-body assumption to estimate displacement.
However, domestic objects often exhibit compliance or multi-
stage articulation (e.g., flexible handles or nested joints).
Future work will explore extending our displacement esti-
mation to handle non-rigid deformations, potentially through
deformable object tracking or sequential state estimation.
Additionally, while our vMF-based modeling captures di-
rectional uncertainty, objects with multiple distinct valid
interaction directions (e.g., a lever that can toggle both up
and down) may require multi-modal distribution modeling or
conditioning on high-level user commands.

Handling grasp failures: Our method currently as-
sumes the initial grasp remains stable throughout manip-
ulation. To mitigate failures from grasp slippage, we plan
to integrate tactile slip detection with dynamic re-grasping
primitives, enabling the system to recover from execution
errors and improve overall robustness.
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