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B*: Efficient and Optimal Base Placement
for Fixed-Base Manipulators

Zihang Zhao®, Leiyao Cui®, Sirui Xie®, Saiyao Zhang®, Zhi Han®, Lecheng Ruan®, and Yixin Zhu

Abstract—Proper base placement is crucial for task execution
feasibility and performance of fixed-base manipulators, the dom-
inant solution in robotic automation. Current methods rely on
pre-computed kinematics databases generated through sampling
to search for solutions. However, they face an inherent trade-off
between solution optimality and computational efficiency when
determining sampling resolution—a challenge that intensifies
when considering long-horizon trajectories, self-collision avoid-
ance, and task-specific requirements. To address these limitations,
we present B*, a novel optimization framework for determining
the optimal base placement that unifies these multiple objectives
without relying on pre-computed databases. B* addresses this
inherently non-convex problem via a two-layer hierarchical
approach: The outer layer systematically manages terminal
constraints through progressively tightening them, particularly
the base mobility constraint, enabling feasible initialization and
broad solution space exploration. Concurrently, the inner layer
addresses the non-convexities of each outer-layer subproblem by
sequential local linearization, effectively transforming the orig-
inal problem into a tractable sequential linear program (SLP).
Comprehensive evaluations across multiple robot platforms and
task complexities demonstrate the effectiveness of B*: it achieves
solution optimality five orders of magnitude better than sampling-
based approaches while maintaining perfect success rates, all with
reduced computational overhead. Operating directly in configu-
ration space, B* not only solves the base placement problem
but also enables simultaneous path planning with customizable
optimization criteria, making it a versatile framework for various
robotic motion planning challenges. B* serves as a crucial
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initialization tool for robotic applications, bridging the gap
between theoretical motion planning and practical deployment
where feasible trajectory existence is fundamental.

Index Terms—Base placement, sequential optimization
| base pose
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Fig. 1: Varied optimal base placement across robotic platforms
and task requirements. To demonstrate this, we present several
examples using two widely adopted manipulators—the KUKA iiwa
(left) and Franka (right) robots. Our examples encompass four key
scenarios: (i) optimal base placement for a linear path, (ii) a circular
path using the base placement optimized for the linear path (showing
unreachable poses), (iii) optimal base placement for the circular path,
and (iv) optimal base placement that accommodates both paths. This
comparison illustrates the necessity of an efficient method to generate
the optimal base placement for each scenario.
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I. INTRODUCTION

Fixed-base manipulators continue to dominate robotic au-
tomation due to their stability, precision, and payload capac-
ity [1, 2], despite emerging advances in mobile and humanoid
platforms [3,4]. Supported by well-established commercial
offerings, they remain central to both industrial applications
and research advances. This progress is further accelerated
by sophisticated algorithms, from global motion planning [5—

] to local motion generation [10—12], which autonomously
generate joint trajectories for diverse tasks.

The effectiveness of these algorithms, however, depends
critically on well-defined Cartesian trajectories within the
manipulator’s workspace [|3]. For fixed-base manipulators,
this workspace is determined by the base placement, making
proper base placement crucial to successful trajectory exe-
cution. The significance of base positioning extends beyond
basic reachability considerations—it directly influences the
manipulator’s ability to maintain continuous joint configura-
tions between via points, avoid self-collision, and optimize
performance throughout complete motion sequences.

This placement problem presents complex challenges due
to the highly non-convex nature of robot workspaces, charac-
terized by discontinuities, singularities, and regions of varying
dexterity [14, 15]. As illustrated in Fig. 1, optimal base place-
ment is highly sensitive to both the robot’s kinematic structure
and specific task requirements—a configuration that minimizes
trajectory length for one task may severely limit the robot’s
capabilities for another.

Current base placement methods face a fundamental lim-
itation: they rely on pre-computed kinematic databases gen-
erated through discretized sampling of the robot’s workspace.
These databases—storing either direct mappings between end-
effector and base positions or collections of inverse kine-
matics (IK) solutions (see Sec. II)—create an unavoidable
trade-off. High-resolution sampling produces better solutions
but severely impacts computational efficiency; low-resolution
sampling offers speed but compromises solution quality and
feasibility. This limitation is intrinsic to the sampling-based
paradigm.

Furthermore, as task complexity grows—such as requiring
more via points in a path, incorporating self-collision checks,
or meeting additional task-specific constraints—the scalability
of these methods is further compromised. This results in a
significant challenge: balancing precision and computational
speed becomes increasingly difficult regardless of search al-
gorithm sophistication. These limitations motivate the develop-
ment of a new framework that can address these shortcomings
and provide a more efficient and scalable solution for base
placement optimization.

We present B*, an optimization framework that over-
comes these limitations by unifying path-wide feasibility,
self-collision avoidance, and task-specific requirements into
a continuous optimization formulation. To tackle this highly
complex optimization, B* employs two-layer hierarchical
strategies:

o Outer layer with progressive constraint tightening: The
terminal optimization problem is temporarily reformulated

into a more tractable form through systematic constraint
relaxation, particularly the base mobility constraint. Initially,
the fixed-base constraint is relaxed by introducing three ad-
ditional degrees of freedom (DoFs) to model the base, akin
to a mobile manipulator. This relaxation ensures feasible
initialization through guaranteed IK solutions while enabling
the exploration of a broader solution space. Constraints are
then gradually enforced, using the explored solutions as
effective initial conditions for subsequent optimization.

o Inner layer with sequential linearization: To address the
inherent non-convexities within each sub-problem generated
by the outer layer, an iterative process of local linearization
is employed. This approach approximates the non-convex
problem by constructing a sequence of locally linear sub-
problems that are computationally tractable. Combined with
the progressive constraint-tightening strategy of the outer
layer, this hierarchical framework effectively transforms the
originally highly non-convex optimization problem into a
tractable sequential linear program (SLP).

We quantitatively validate B* through comprehensive test-
ing in four manipulator types and 2400 randomly generated
paths of varying complexity levels. Operating directly in con-
figuration space without relying on pre-computed databases,
B* achieves: (i) perfect success rates across all test cases,
even for complex trajectories with multiple via-points and
self-collision constraints; (ii) solution optimality five orders
of magnitude better than sampling-based methods, particularly
in challenging scenarios requiring precise positioning; and (iii)
reduced computational overhead despite higher precision.

These results establish B* as a versatile framework for
optimal base placement, effectively bridging the gap between
theoretical motion planning and practical deployment. By
operating directly in configuration space, our approach not
only solves the base placement problem but also enables simul-
taneous path planning with customizable optimization criteria.
This capability opens new possibilities for unified trajectory
and base optimization in robotic manipulation, particularly in
applications requiring high precision and efficiency.

Our contributions are twofold:

« A novel configuration-space optimization framework that
determines optimal base placement without precomputed
databases, ensuring solution optimality while maintaining
high success rates and computational efficiency.

« Comprehensive evaluation across multiple manipulators (6-
DoF to 7-DoF) and varying path complexities, demonstrat-
ing the framework’s versatility and robustness in diverse
scenarios.

The remainder of this paper is organized as follows: Sec. II
examines current base placement methods and their limitations
in detail. Sec. III presents the theoretical framework of B*,
including our novel optimization approach. Sec. IV provides
comprehensive experimental validation across various robotic
platforms and task complexities. Sec. V analyzes key perfor-
mance characteristics and discusses future research directions.
Sec. VI summarizes our findings and contributions.
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II. RELATED WORK

A proper base placement is fundamental for fixed-base ma-
nipulators to execute tasks successfully. Research in this field
has evolved through several stages of increasing complexity,
starting with simple reachability verification and progressing
to sophisticated trajectory-aware optimization.

Initial studies concentrated on single-point position reacha-
bility [16], leveraging the concept of reachability maps (RMs).
These maps were precomputed by systematically sampling
the kinematic relationships between the base and end-effector,
expressed through homogeneous transformation matrices [ 14,

, 18]. While this foundational approach proved effective for
basic positioning, researchers recognized the need for opti-
mization criteria, leading to the integration of manipulability
metrics for base placement selection [19,20]. The limita-
tions of static reachability maps in dynamic environments
prompted the development of adaptive RMs [21]. Building
upon these advances, researchers expanded the framework to
address more sophisticated requirements, incorporating base
orientation considerations [17,22] and multi-point reachability
analysis [23,24]. Recent advances in learning-based method-
ologies have enabled neural networks to function as efficient
approximators for complex kinematic mappings, substantially
enhancing computational performance for single-point reach-
ability analysis [25].

Despite significant advances in reachability mapping, a
fundamental limitation remained: while these methods could
verify point-wise reachability, they could not guarantee the
feasibility of continuous trajectories between reachable points.
This limitation became particularly apparent in practical appli-
cations where two points might be individually reachable yet
connected by no viable path due to kinematic constraints or
environmental obstacles. This crucial insight led to a paradigm
shift in representing kinematic relationships, replacing the
traditional homogeneous transformation matrix approach with
an IK-based formulation. This transition enabled a more
comprehensive evaluation of both point reachability and path
feasibility within the robot’s configuration space [26,27].

However, even IK-based approaches remain constrained
by their reliance on pre-computed sampling-based databases
and search algorithms for optimal base placement. This de-
pendence on discrete sampling creates an inherent trade-off:
higher sampling resolution provides better precision but de-
mands greater computational resources and memory capacity,
while lower resolution sacrifices precision for efficiency.

In contrast to existing approaches, this paper introduces B*,
a novel optimization-based framework for determining opti-
mal base placement. Unlike traditional methods that depend
on pre-computed databases, B* operates directly within the
robot’s configuration space. Moreover, compared to learning-
based methods, it offers broader applicability to manipulators
with arbitrary configurations. Through its unified optimization
formulation, B* achieves significant improvements in compu-
tational efficiency while maintaining high success rates and
solution optimality across diverse task scenarios.

III. THE B* METHOD

We present B*, our optimization framework for fixed-base
manipulator placement. We first formalize the mathematical
foundations of optimal base placement (Sec. III-A), then in-
troduce a two-layer optimization strategy that decomposes this
non-convex problem into tractable sub-problems (Sec. III-B).

A. Problem Formulation

We formulate the base placement problem for fixed-base
manipulators, intended to be mounted on a flat surface
(whether horizontal or slanted), as an optimization problem.
For a robotic manipulator mounted on a fixed base, we seek to
compute the optimal base placement q° = [z°, y®, 6°]" € SE(2)
(SE(k) denotes special Euclidean group in k dimensions)
that enables successful task execution. The manipulation task
comprises an ordered sequence of desired end-effector poses
in SE(3):

T4 =[T1, T2, , @] ERVC, (1)

where each x; € R® encodes position and orientation parame-
ters at time step ¢. These task poses can be provided directly
by a human operator or generated via interpolation methods
for smooth and continuous motion between successive steps.
For any candidate base placement g°, the manipulator must
achieve feasible joint configurations ¢7% =[q;,qs, "+ ,q;] €
R**™ to reach each target pose x;, where n is DoF of
the manipulator. The optimization problem requires finding
both an optimal base placement and a sequence of valid
joint configurations that satisfy the manipulator’s kinematic
constraints. This leads to the following formulation:

minimize  f(q", q7%)
subject to  gi(q”, %) =0,
hi<qb7 qint) < 07
where f is a scalar objective function, and g; and h; represent
equality and inequality constraints, respectively. We detail

these objectives and constraints below.

Objective Function: = The primary requirement in base
placement optimization is satisfying reachability constraints
while maintaining flexibility in objective function formulation.

We present two common formulations. The simplest is the
feasibility-only approach:

fl@’.q) =1, 3)

which transforms the optimization into a feasibility test, seek-
ing any valid solution that satisfies all constraints.

For tasks requiring efficient execution, we can further min-
imize path length:

i=1,2,...n0 ()

i=1,2,... Nineq

t—1
F@bqm) = laf —a" |- €
=1

We utilize non-differentiable ¢; penalties, although smooth
{5 penalties produce comparable results [9]. The inclusion
of the /1 term elegantly reformulates the problem into an
equivalent linear programming task with linear constraints.
By introducing auxiliary slack variables z; with constraints



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED AUGUST, 2025

zi = x;, z; > —x; and z; >0, each absolute value term ||
is transformed into a linear program equivalent. This choice
also ensures compatibility with a wide range of optimization
solvers [28].

Equality Constraints:  The primary equality constraints
ensure the end-effector reaches all targeted poses. Let
¥(gb, @) : SE(2) x R™ —R® denote the forward kinematics
mapping from the base and joint configuration to end-effector
pose. We enforce exact pose achievement through:

91:¢(q", /") i=1,2,...,t (5)

Inequality Constraints: In addition to achieving each
pose, the manipulator must respect several physical and safety
constraints. First, base placement q”e SE(2) must remain
within allowable position and orlentatlon ranges determined

=&y,

by working conditions. Let q° " and q denote the lower
and upper bounds, respectively:
hig" <q’<q"", 6)

where < represents a element-wise “less than or equal to”
relationship between vectors.

Next, each joint configuration g;" must remain within its
feasible range, bounded by mechanical joint limits With lower
and upper bounds denoted as g™ and ¢, we impose:

ha @™ <q<q™™, i=1,2,....t. (7

Finally, collision-free motion is enforced through:

h3 : Sd(qba q:n) = Oa

where the signed distance sd(-) as defined in [29] represents
the minimal translation distance required to alter the spatial
relationship between objects. This formulation addresses self-
collision avoidance and can be extended to obstacle avoidance
by incorporating obstacle geometry information.

i=1,2,....t, (8)

B. Two-Layer Optimization of B*

The optimization problem presented above is highly non-
convex and challenging to solve directly. We address this com-
plexity through a hierarchical two-layer optimization struc-
ture. Specifically, the inner layer manages local non-convexity
through iterative convex approximations of the original prob-
lem. The outer layer employs a novel approach by initially
treating the base as three additional DoFs, analogous to a
mobile manipulator. This formulation ensures solution feasibil-
ity while enabling comprehensive exploration of the solution
space. By progressively increasing penalties on base move-
ment, the algorithm converges to a fixed base configuration,
effectively balancing thorough solution space exploration with
fixed-base constraint satisfaction.

Outer Layer—Base Relaxation: The complexity of
optimization stems largely from finding an initially feasible
solution under fixed base constraints. We address this through
a strategic relaxation approach.

We first solve a relaxed problem by treating the fixed base as
mobile, transforming the timestep-invariant base configuration
g into a time-varying sequence q¢,, effectively introducing
three additional DoF per timestep. To ensure convergence to

a fixed base configuration, we introduce a base movement
penalty with an iteration-dependent coefficient u(j) that in-
creases with outer loop iteration j.

The modified objective function f'(q%.,, q%; u(5)) be-
comes:

(@0 @l 1(3) = F(a3.0 @) + 1y Z lg} a1, 9
where @’ is the arithmetic mean of base poses across all steps.
We employ ¢; penalties over {5 as they more effectively drive
the second term to zero with matching coefficients (), ensur-
ing convergence to a stable configuration. The coefficient p(5)
progressively increases across outer loop iterations, gradually
enforcing the fixed base constraint.

All constraints involving the fixed base q® must be re-
formulated for the relaxed problem. Each instance of q°
in the original constraints is replaced with its time-indexed
counterpart q? at the corresponding timestep i. For example,
the base limits constraint becomes:

g <gl<g, i=12, 1 (10)

These constraints are subsequently transformed into penalty
terms to accommodate potentially infeasible initial conditions,
ensuring the algorithm can start from arbitrary initial states
while maintaining numerical stability.

Inner Layer—Linearization:  Even after relaxation, the
problem’s inherent non-convexity poses significant challenges
for optimization. Drawing inspiration from sequential pro-
gramming [30], we address this through iterative convex
approximations within trust regions.

Given a non-convex function ¢(z), we construct its con-
vex approximation ¢.(x) through first-order Taylor expansion
around the current point xg:

¢e(x) = d(20) + d(w0) (x —20), (11)

where ¢(zo) represents the first-order derivative at xo. The
trust region size adapts based on approximation quality—
expanding when the approximation performs well and con-
tracting when it poorly represents the original function [30].
This two-layer framework combines base relaxation with
local linear approximation to transform the non-convex opti-
mization into a series of tractable linear programs (LPs). The
outer iterations broadly explore the solution space for suitable
initialization, while inner iterations efficiently traverse the
current non-convex space to determine a high-quality solution
specifying fixed base placement and joint configurations.

IV. EVALUATIONS

We evaluate B* through comprehensive simulation studies
assessing its effectiveness in determining optimal fixed-base
manipulator poses across diverse tasks. Our evaluation com-
prises two components: First, Sec. IV-B provides qualitative
insights into B*’s operational principles through representative
examples that illustrate its behavior across different scenarios.
Second, Sec. IV-C presents detailed quantitative comparisons
against baseline methods using extensive randomly generated
test cases of varying complexity.
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Fig. 2: Visualization of B*’s optimization process over multiple iterations. Each row shows a different test scenario, demonstrating the
method on both the KUKA iiwa and Franka robots performing compound trajectories. Starting from an initial configuration with relaxed
base constraints (leftmost column), the optimization progressively constrains the base position through increasing penalty coefficients (middle
columns), until converging to a single fixed base placement (rightmost column). During intermediate steps, some constraints, such as the
end-effector (EE) constraint (Eq. (5)), may temporarily violate the target states as the algorithm balances between base convergence and task
constraints. More examples and full optimization sequences are available in the Supplementary Video S1.

A. Implementation Details

B* optimizes for minimal-length task completion paths as
formalized in Eq. (4). The process initializes using an IK
solution incorporating 3 additional base DoFs. For the first
point 21, random initialization ensures comprehensive solution
space exploration. Subsequent points are initialized using the
preceding point’s IK solution to promote trajectory continuity.

The optimization problem is implemented using the COPT
solver [31]. Given the established correlation between initial-
ization quality and sequential programming performance [9],
B* employs up to 10 retry attempts with different initializa-
tions when needed.

B. Qualitative Results

We evaluated B* through experiments on a representative
trajectory type, incorporating ground collision avoidance con-
straints. The type comprises complex compound paths that
combine linear and circular segments, requiring 64 uniformly
spaced end-effector poses. To demonstrate generalizability,
we tested B* on two industrial manipulators with distinct
kinematic structures and workspace characteristics: the Franka
Emika Panda and KUKA LBR iiwa.

Fig. 2 captures the optimization progression through four
key iterations for each task category. To maintain visual clar-
ity, we show selected configurations—7 poses for compound
paths. Starting from the leftmost column with initial IK solu-
tions using relaxed base poses (Sec. IV-A), the optimization
proceeds through intermediate stages where increasing penalty
coefficients drive convergence toward a fixed base. During
this process, the robot may temporarily deviate from target
end-effector poses due to our soft constraint formulation. The
rightmost column shows the final solution: a single, collision-

free base placement that enables the robot to reach all desired
end-effector poses successfully.
C. Quantitative Results

We conducted extensive quantitative evaluations comparing
B* against baseline approaches across varying task complexi-
ties and robot platforms. Our evaluation framework consists of
four key components: (i) a systematic test data generation pro-
cess covering diverse workspace configurations, (ii) implemen-
tation of established baseline methods using pre-computed 1K
databases, (iii) comprehensive performance metrics measuring
success rate, solution optimality, and computational efficiency,
and (iv) controlled testing environment for fair comparison.

Large-Scale Test Data Generation:  To ensure rigorous
evaluation, we developed a systematic approach for generating
test datasets that comprehensively span each manipulator’s
workspace across varying complexity levels. Our data gen-
eration process consists of three key components.

The first component focuses on initial configuration sam-
pling. We generate the start pose x; by uniformly sampling
the joint space to achieve comprehensive coverage:

z1=v(¢’ q), qF~U(@™", q™M).

q" merely accounts for a planar transformation in SE(2)
without affecting workspace characteristics. Therefore, we set
q" to zero vector without losing generality.

The second component generates workspace-valid pose
sequences. To maintain kinematic feasibility, we construct
subsequent poses through incremental perturbations in joint
space. Each pose builds upon its predecessor through small
displacements &;:

12)

k—1
o =0(g"ql"+ > &), &~Nu ),

Jj=1

13)


https://vimeo.com/1050685543
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Fig. 3: Success rate comparison between baseline methods and
B*. While baseline methods with more IK samples show higher
success rates at low complexity levels, their performance deteriorates
sharply as the complexity level [ increases. With just 10 samples
(b-10), the baseline struggles even at level 1, while 1000 samples
(b-1000) maintain moderate success through level 2 before failing.
In contrast, B* maintains 100 % success rate across all complexity
levels [ (see Eq. (14)).

where peR™ has all entries equal to 0.0lrad and ¥ =
diag(0.005%) e R"*", These parameters were empirically se-
lected for effective workspace exploration. We validate trajec-
tory feasibility using NVIDIA Isaac Sim’s Luna module.
The third component implements multi-level complexity
scaling. For systematic evaluation across different scales, we
generate pose sequences of varying lengths based on complex-
ity level I:
leN*.

t=2 (14)

We applied this framework to four widely-used manipula-
tors: Franka Emika Panda, Kinova Gen3, KUKA LBR iiwa,
and Universal Robots UR10, covering both 6-DoF and 7-
DoF manipulators. For each robot-complexity combination
(I=1,...,6), we generated 100 distinct sequences, yielding
2400 comprehensive test cases.

Baseline Methods: We evaluated B* against search-
based approaches utilizing pre-computed IK solution
databases. These baseline methods treat the base position’s
three planar DoF as additional joints in the IK formulation.
For each target point in a sequence, we employ CuRobo [32]
to generate <y collision-free IK solutions comprising both
manipulator joint configurations and base positions. Using
this IK dataset, the baseline methods search for feasible joint
paths allowing point-to-point movement while maintaining
the base position within a confined space. We implement
this search using a breadth-first algorithm to ensure global
optimality for fair comparison with the optimization-based
method B* in solution optimality. To investigate the impact
of solution sampling density, we evaluated three baseline
configurations: b-10, b-100, and b-1000, corresponding to
~€ {10,100, 1000} IK solutions per target point.

Metrics: To comprehensively evaluate performance
across methods, we employ three complementary metrics that
assess different aspects of solution quality and efficiency:

o Success rate: As our primary effectiveness metric, success

I b-10 PN b-100 N b-1000 MENEN B*

10° 107
= 10' < 10+
E I %
g »
g =5
E 10 105 &
< o
=
&'10" 3 10 2
5 ‘ g
=t =
= <
S 10 107 =
=
=3
2 g
= a2
% 10° 10 4—
O
10+ 109

1 2 3 4 5 6
complexity level

Fig. 4: Solution optimality (ATE) comparison between baseline
methods (left axis) and B* (right axis) across complexity levels.
Baseline methods, even with increased IK samples, achieve only
millimeter-level precision due to sampling resolution limits. B*
achieves five orders of magnitude better precision by operating in
continuous configuration space. Box plots show error distributions:
boxes indicate interquartile range (IQR), center lines represent me-
dians, and whiskers extend to 1.5xIQR beyond quartiles.

rate evaluates algorithmic reliability using well-defined bi-
nary criteria. For B*, success is determined by optimization
convergence to a valid solution. Baseline methods must
satisfy two conditions for success: maintaining base position
variations within specified tolerances (0.01 m for translations
and 0.05 rad for rotation), and completing the search within
a 10 min time limit.

o Solution optimality: To rigorously assess solution optimality,
we quantify base path deviation using the absolute trajectory
error (ATE) [33]. This metric computes the root-mean-
squared error of Lie algebra components across all pairwise
base placement combinations.

o Runtime: Computational scalability serves as a crucial cri-
terion for practical deployment in complex scenarios. We
analyze time efficiency by measuring total computation
times across varying complexity levels. For B*, this encom-
passes the complete runtime of all optimization attempts.
For baseline methods, we include both the time required
for IK solution generation and the subsequent optimal base
placement search process.

Test Environment:  The implementation of all methods
uses Python as the primary programming language, with all
computations performed exclusively on the CPU using an
AMD Ryzen 9 5950X processor supported by 64 GB of RAM.

Results:  Our experimental evaluation reveals clear per-
formance patterns across different methods. As shown in
Figs. 3 and 4, baseline approaches are effective for simple
scenarios but degrade significantly with increasing sequence
length. While using more IK solutions improves both suc-
cess rate and solution optimality, this comes at a substantial
computational cost. This trade-off is evident in Fig. 5, where
higher numbers of IK solutions result in longer runtime due
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Fig. 5: Runtime comparison between baseline methods and B*
across complexity levels. While baseline methods show increased
runtime with higher IK numbers, B* demonstrates superior efficiency
with linear scaling (fit shown: log,,(time) = 0.376 log, 2" —0.907).
Box plots in the same format as Fig. 4 illustrate runtime distributions,
with outliers above 100 s excluded for visualization clarity.

TABLE I: Sub-process runtime of B* in milliseconds.

Level Initialization Inner Layer Outer Layer

1 6.255+3.561  20.516 +3.898
9.216 £5.130  25.491+4.870
13.665+4.725  35.049+6.178 219.044 £+ 304.350

2
3
4  24507+8.162  60.584+10.931  451.903 & 564.226
5
6

79.350 £115.193
132.6524188.241

46.386 £14.869 114.614+21.725 1032.0604+1191.717
96.314+42.203 269.816 £65.030 2838.154 £3123.153

TABLE II: # of initialization retries across complexity levels.

level 1 2 3 4 5 6
# 1.14+03 1.1+0.3 1.1+04 1.3+0.8 1.4+1.0 2.0+2.0

to increased search complexity.

B*, in contrast, achieves optimal performance across all
robots and complexity levels, maintaining consistent success
rates as demonstrated in Fig. 3. Through direct configura-
tion space optimization, B* overcomes sampling resolution
limitations, achieving five orders of magnitude improvement
in solution optimality (Fig. 4). These substantial gains come
with improved computational efficiency—B* maintains faster
completion times than baseline methods while scaling linearly
with scenario complexity (Fig. 5) with detailed sub-process
run time in Tab. L.

V. DISCUSSIONS AND FUTURE WORK

Our study highlights B*’s effectiveness in efficiently de-
termining optimal base placements for manipulation tasks.
Traditional approaches relying on pre-computed kinematic
databases show a clear dependence on the number of IK
solutions (Figs. 3 and 4). While infinite sampling could
theoretically achieve perfect results, this is impractical due to
significant computational and storage overhead, especially in
the breadth-first search used in baseline methods to guarantee
optimality. Although alternative search methods like depth-
first or heuristic search can reduce resource demands, they

compromise optimality. More importantly, regardless of the
search method used, these approaches fail to address the
fundamental issue of sampling resolution inherent in sampling-
based methods.

B* tackles these challenges with a fundamentally different
approach: direct optimization in the robot’s configuration
space. This method achieves a five-order-of-magnitude im-
provement in solution optimality over baseline methods while
maintaining a perfect success rate and linear computational
scalability. Beyond base placement optimization, the B* also
serves as a path planner with customizable cost functions, en-
abling the optimization of additional criteria, such as minimal
path length, as demonstrated in this study.

B* incorporates constraints such as joint limits, ground col-
lisions, and self-collisions into the optimization. With accurate
kinematic and collision models, its results are transferable
to real-world applications. To validate this, we applied B*
to a physical 7-DoF Kinova robot with target poses shown
in Fig. 1. For convenience and without compromising rigor,
we transform the world coordinate frame to align with the
base poses calculated by B* in each scenario. The generated
joint configurations were directly executed on the physical
robot, with end-effector poses verified through the Kinova
official interface. The results, presented in Fig. 6, confirm
that all configurations are executable and achieve the desired
target poses. The complete execution process and detailed
application scenarios are provided in the Supplementary Video
S2 and Supplementary Video S3, respectively.

However, the current deployment of the B* exhibits lim-
itations in initialization, which is critical for optimization
convergence in highly non-convex problems. Even with ad-
vanced convexification techniques, initialization remains an
open question in the broader optimization field [15]. In this
study, we demonstrate the effectiveness of the B* using
random initialization, achieving notable success even with a
7-DoF manipulator and 64 target end-effector poses. However,
task complexity increases the number of required initialization
retries, as shown in Tab. II. This escalation arises from the
growing number of optimization variables, which impacts
performance in two ways: it prolongs the time required to
solve individual optimization instances and increases the total
solution time due to additional retries, as illustrated in Fig. 5.
In more severe scenarios, like highly constrained environ-
ments, the random initialization could lead to failure.

Given these challenges, developing a more sophisticated
initialization method for B* emerges as a promising direction
for future work. Moreover, while this study focuses primarily
on reachability and collision constraints, future work will
explore incorporating additional real-world constraints, such
as forces exerted at the end-effector, mounting limitations, and
dynamic obstacles in the environment. These extensions will
enhance B*’s applicability to real-world scenarios.

VI. CONCLUSION

In this paper, we present B*, a novel optimization frame-
work that improves both computational efficiency and solution
optimality for base placement determination in fixed-base ma-
nipulators, outperforming traditional sampling-based methods.
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Fig. 6: Real-world validation. (a) The effectiveness of B* is demonstrated on a 7-DoF Kinova robot in a real-world setting. With accurate
kinematic and collision models, the joint path generated by B* is successfully executed, achieving the target pose. This is illustrated
through the execution of a linear path (b), a circular path (c), and a compound path (d). The complete execution process is available at the
Supplementary Video S2.

B* employs a two-layer optimization strategy: an outer layer
for relaxed base exploration and an inner layer that addresses
non-convex constraints using iterative local linearization. This
approach effectively tackles challenges associated with long-
horizon tasks, task-specific requirements, and self-collision
avoidance. Furthermore, by operating directly in the configura-
tion space, B* eliminates reliance on precomputed kinematic
databases, providing a scalable and versatile solution for a
wide range of robotic applications.
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