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Abstract—We present a Sequential Mobile Manipulation Plan-
ning (SMMP) framework that can solve long-horizon multi-step
mobile manipulation tasks with coordinated whole-body motion,
even when interacting with articulated objects. By abstracting en-
vironmental structures as kinematic models and integrating them
with the robot’s kinematics, we construct an Augmented Config-
uration Apace (A-Space) that unifies the previously separate task
constraints for navigation and manipulation, while accounting for
the joint reachability of the robot base, arm, and manipulated
objects. This integration facilitates efficient planning within a
tri-level framework: a task planner generates symbolic action
sequences to model the evolution of A-Space, an optimization-
based motion planner computes continuous trajectories within
A-Space to achieve desired configurations for both the robot
and scene elements, and an intermediate plan refinement stage
selects action goals that ensure long-horizon feasibility. Our
simulation studies first confirm that planning in A-Space achieves
an 84.6 % higher task success rate compared to baseline methods.
Validation on real robotic systems demonstrates fluid mobile
manipulation involving (i) seven types of rigid and articulated
objects across 17 distinct contexts, and (ii) long-horizon tasks of
up to 14 sequential steps. Our results highlight the significance
of modeling scene Kkinematics into planning entities, rather
than encoding task-specific constraints, offering a scalable and
generalizable approach to complex robotic manipulation.

Index Terms—Sequential mobile manipulation planning, kine-
matics, trajectory optimization, and service robot.

I. INTRODUCTION

UTONOMOUS robots are increasingly being integrated
into diverse environments in human society. Whether as-
sisting people in daily activities [3,4] or operating in outposts
such as space stations or extraterrestrial bases [5,6], robot
operations face significant challenges in performing sequential
mobile manipulation tasks that require a range of manipulation
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skills and the ability to sequence these skills in expansive
workspaces.

Fig. 1(a) illustrates a typical Sequential Mobile Manip-
ulation Planning (SMMP) scenario. Operating in cluttered
workspaces poses significant challenges due to complex ob-
stacle configurations [7]. Robots are often required to balance
both navigation and manipulation, i.e., mobile manipulation,
to accomplish their goals [8, 9]. Moreover, contact with diverse
structures and objects introduces a wide range of task objec-
tives and constraints, which are difficult to emulate in advance,
particularly when dealing with articulated objects [1, 10, 11].
Compounding this difficulty, robot actions can change the
environment in ways that hinder the feasibility of future
steps in long-horizon tasks [12—-15]. Therefore, the successful
execution of an action in long-horizon mobile manipulation
requires not only coordinating base-arm-object trajectories
for individual steps, but also reasoning about the long-term
implications of each action on future task feasibility.

Achieving coordinated trajectories of the robot’s base,
arm, and manipulated object can become computationally
intractable in long-horizon tasks due to the inherently interde-
pendent configuration spaces during interactions, as shown in
Fig. 1(b). Consequently, the likelihood of finding connected
feasible paths across consecutive steps is low, and costly
backtracking is often required when the planner encounters
dead ends. A hierarchical strategy is typically employed to
decompose the task execution into a sequence of primi-
tive motions [12, 14, 16], facilitating more efficient trajectory
generation and reducing computation costs in the face of
errors. However, current hierarchical methods such as Task
and Motion Planning (TAMP) are primarily effective only
for pick-and-place tasks [17-19], failing to scale to complex
mobile manipulation tasks. This limitation arises because
complex mobile manipulation tasks require tightly coordinated
navigation and manipulation, which are difficult to express
symbolically. Semantic symbols often fail to capture critical
geometric constraints necessary for task success, such as valid
base positioning, interdependent base and arm movements, and
collision avoidance. For example, the tasks in Fig. 1 involve
coupled base-arm-object interactions that would demand an
intractable number of symbolic predicates to model accurately.

In stark contrast, humans exhibit fluid manipulation skills
and interact adeptly with their environment. Theories in cog-
nitive psychology and philosophy suggest the concept of body
schema: humans maintain a flexible representation of their
bodies, enabling them to treat manipulated objects as exten-
sions of their limbs during interactions [20,21]. Embodied
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Fig. 1: An exemplar household task illustrating the advancement of proposed Sequential Mobile Manipulation Planning (SMMP)
framework with A-Space compared to traditional planning. (a) In this long-horizon task, the robot must (T1) remove the chair to
approach the bedroom door, (T2) open the door and pass through it, and (T3) open the kitchen drawer. (b) Separated base-arm-object
planning faces inherent challenges: as the base moves, the arm and object’s configuration space evolves, frequently making initially feasible
trajectories infeasible. This approach simplifies the planning complexity but may require costly backtracking across different configuration
spaces, particularly in tasks demanding whole-body coordination. (c) By leveraging A-Space, separate configuration spaces are unified through
Augmented Kinematic Representation (AKR), incorporating various task constraints to enable coordinated base-arm-object trajectories across
multiple steps via trajectory optimization, reducing the need for hierarchical backtracking.

cognition studies further highlight that human intelligence is
deeply intertwined with the environment [22|23]).

Drawing from these insights, we propose to treat the envi-
ronment and the robot embodiment as a whole for an efficient
solution to mobile manipulation tasks. Specifically, we consol-
idate kinematic abstractions of scene elements [24]], robot arm,
and navigational movements into an Augmented Kinematic
Representation (AKR). This consolidation merges originally
separated yet entangled robot and object’s configuration spaces
into a single one, which we termed Augmented Configuration
Space (A-Space), as depicted in Fig. 1(c). From this perspec-
tive, planning sequential mobile manipulation in A-Space can
jointly account for the reachability of the robot base, arm,
and manipulated objects and their inherent motion constraints,
thus better ensuring spatial feasibility of sophisticated robot
movements and resolving action temporal dependency among
long-horizon tasks.

As A-Space is highly complex due to the extended Degree
of Freedoms (DoFs), we design a tri-level planning frame-
work for efficient planning within it. By formulating an
optimization-based motion planner, we can compute con-
tinuous trajectories to reach the desired configurations of
both robot and scene entities, resulting in coordinated whole-
body motions that satisfy relevant constraints. Furthermore,
we design a task planner that defines symbolic states more

intuitively and models actions along with their effects on
A-Space, thereby enabling validation of motion feasibility
over extended horizons by traversing temporally successive
configuration spaces. Extending our previous foundation in
task planning and motion planning [1,2], a newly designed
plan refinement algorithm further combines them to resolve
potential conflicts between anticipated future actions. Together,
these components form a scalable SMMP framework capable
of handling long-horizon mobile manipulation tasks involving
diverse interactions within complex environments. We demon-
strate the framework’s effectiveness on a real robot system
by performing coordinated base-arm-object motions across 17
diverse scenarios involving complex environmental structures.
Moreover, the system successfully completes a 14-step long-
horizon mobile manipulation task in a cluttered living room,
with each step characterized by unique contact configurations.
Additional simulation studies further validate our approach,
quantifying improvements in execution efficiency and planning
success rates when using A-Space compared to traditional
planning paradigms.

Our contribution is fourfold:

1) We introduce an SMMP framework that solves long-
horizon mobile manipulation tasks, with a newly proposed
plan refinement algorithm that considers future actions
while generating the motion planning problem for the



current action, effectively increasing task success rates in
complex long-horizon SMMP problems.

2) We model the mobile manipulation planning problem from
the AKR perspective, formulating the mobile manipulation
planning problem as a trajectory optimization problem
within the A-Space that integrates task specifications.

3) We design a Planning Domain Definition Language
(PDDL)-based task planning domain describing the evolu-
tion of the A-Space, generalizing it to various daily long-
horizon indoor mobile manipulation tasks.

4) Through simulations, we validate the proposed method,
achieving an 84.6% improvement in success rate over
baseline methods. With extensive experiments on phys-
ical mobile manipulators, we demonstrate the proposed
method’s feasibility across 7 types of rigid and articulated
objects in 17 different contexts, with long-horizon tasks
involving up to 14 steps.

A. Overview

The remainder of this article is organized as follows. Sec.
reviews the literature and compares existing research with the
contributions of this work. Sec. III introduces the proposed
AKR-based modeling method for mobile manipulation. Based
on the idea of AKR, Sec. formulates the corresponding mo-
tion planning and task planning setups, and Sec. V elaborates
the newly proposed plan refinement algorithm that bridges
AKR-based motion planning with task planning components
into a coherent SMMP system. Finally, Sec. and Sec. VII
demonstrate the efficacy of AKRs through simulations and
experiments, respectively. Sec. VIII concludes the paper with
an in-depth discussion of key findings and future directions.

II. RELATED WORK
A. Mobile Manipulation

Recently, notable efforts have focused on algorithms and
system implementations to coordinate navigation and ma-
nipulation for mobile manipulation, especially within house-
hold environments. For instance, graph search [25]], equilib-
rium point control [26], adaptive control [10], impedance
control [27]], and model predictive control [28] have been
introduced for tasks like opening doors and drawers. For
object retrieval or relocation in confined and cluttered spaces,
methods such as the coevolutionary algorithm in [29], which
jointly optimizes grasping and base poses, and adaptive di-
mensionality reduction in [30], which manages the high DoFs
search space, have shown promise. Other techniques include
inverse kinematics branching for iterative optimization of base
and joint motions [31] and holistic control of the arm and base
as a unified structure [32]. While existing robotic planning
methods achieve promising results on isolated tasks, such as
door opening or object retrieval in controlled environments,
their specialized, task-specific designs cannot generalize to
broader scenarios requiring coordinated manipulation by the
mobile base, manipulator arm, and target object. Yet, our
SMMP scenario demands manipulation of objects with diverse
kinematic structures in varied environments, where successful
task execution critically depends on coordination among the
mobile base, manipulator arm, and target object. In addition,

deep Reinforcement Learning (RL) has recently gained pop-
ularity for manipulation tasks involving rich interactions. For
example, [33]] trains an RL policy for object retrieval on a
physical manipulator, and [34] uses deep RL for whole-body
control in door-opening tasks, while [35] abstracts the action
space into base and arm sub-goals for long-horizon tasks in
simulated environments. Although RL offers advantages for
complex interaction planning, learned policies often suffer
from poor transferability from simulation to real-world ap-
plications and do not scale effectively to long-horizon tasks
due to substantial training time.

B. Multi-Modal Motion Planning (MMMP)

In sequential manipulation tasks, robots must repeatedly
establish and release contact with various objects, exhibiting
multi-modal behavior: contact states (discrete modes) con-
strain robot motions, effectively partitioning the environment’s
configuration space into interconnected manifolds. Transitions
between manifolds indicate potential mode changes. Building
on this concept, MMMP methods [[36-40] aim to find feasi-
ble trajectories across different manifolds, producing motion
plans applicable to sequential mobile manipulation tasks. For
example, Hauser et al. [38] propose a scalable algorithm
that randomly samples mode switches and motion paths on
a known mode transition graph to generate a solution plan,
while Toussaint et al. [40] abstracts contact modes using dif-
ferentiable physics, enabling tool-use planning. These methods
yield impressive results in planning multi-step actions, but they
share a limitation common to MMMP: their planning domains
are specifically designed and restricted to geometric features,
necessitating extensive efforts in custom planner design and
mode transition definitions for numerous contact modes. This
proves inadequate for semantically rich environments where
object relationships transcend simple contacts [18]. While the
MMMP approach shares similarities with our work in terms
of abstracting actions through contacts, the proposed AKR
enables the use of off-the-shelf planning languages and aims
to accommodate a broad range of mobile manipulation tasks
without defining specific actions for each task.

C. TAMP

Thanks to the development of PDDL [41]] and other plan-
ning languages, complex symbolic planning can be solved
using standard algorithms [42}/43]]. While symbolic planning
effectively captures abstract concepts, it struggles to repre-
sent the feasibility of robot motions. This limitation has led
the robotics community to integrate MMMP concepts with
symbolic task planners, forming the field of TAMP [1§].
Current TAMP approaches typically employ a bidirectional
interface between task and motion planning [12,/44-46], but
they remain computationally expensive due to their reliance
on dense sampling in high-dimensional spaces [7]. Recent
work has sought to address these inefficiencies: Zhang et
al. [47] optimize symbolic state spaces to reduce redundant
navigation actions, Yang et al. [48|] leverage Vision-Language
Models (VLMs) to propose high-level subgoals to prune search
spaces, and Sung et al. [49] learns back-jump heuristics that
identify the culprit action and bypass irrelevant backtracking



steps. However, the iterative nature of TAMP approaches still
imposes significant computational overhead, as failed motion
planning attempts trigger backtracking and replanning of ac-
tion sequences. As a result, many TAMP approaches simplify
motion planning and limit themselves to basic manipulation
tasks, avoiding the complexity of designing intricate planning
domains and specific motion planners for complex mobile
manipulation tasks.

Departing from traditional efforts in TAMP approaches that
either optimize search strategies or redesign task-motion inter-
faces, this work proposes a new perspective by planning mo-
bile manipulation tasks through the AKR. The proposed AKR
constitutes an effective intermediate representation that can
benefit TAMP in solving challenging sequential mobile manip-
ulation tasks by improving computational efficiency through
reducing intermediate variables and facilitating optimization-
based motion planning.

This work builds upon our preliminary results presented in
Jiao et al. [1,2]. The extension features a more comprehensive
literature review, the introduction of a new plan refinement
algorithm that enhances planning success rates by selecting
key AKR configurations throughout the action sequence, and
extensive benchmarking that compares our SMMP framework
to baselines using off-the-shelf motion planners. Additionally,
we include implementation and large-scale experimentation on
a physical mobile manipulator platform.

III. AKR MODELING

This section describes three key steps for integrating robot
and scene models into one cohesive kinematic representation,
termed Augmented Kinematic Representation (AKR).

A. Kinematic Representation

The kinematic representation used in this article is defined
as a tree 7 = (V,.S) where the rigid bodies of an articulated
object are described as links v; € V, while their inherent
motion constraints and spatial relations are represented by
joints s;; € S. Specifically, the node set V includes a set
of links v; = {o0;, F;); each encodes a full geometry model o;
(e.g., a triangular mesh or empty for dummy link), and a link
frame F;. In addition, the root node of 7 is denoted as v,.
The edge set S includes a set of joints s;; = (r;;,5T); each
encodes the motion constraints r;; (e.g., bounded revolute or
prismatic motion along an axis) between the parent link v;
and the child link v;, and a spatial transformation ;T from
the parent link frame F; to the child link frame F;. Based
on the above notations, a kinematic chain C;; = (Vi;, Si;)
contains only nodes V;; < V and edges S;; < S that belong
to a path between a node v; and one of its descendant nodes
Uj in T

B. AKR Modeling for Mobile Manipulation

To construct an AKR, T4, four key inputs are required: the
manipulator’s kinematics 7%, object kinematics 7©, a virtual
mobile base 72, and a virtual attachment joint s, between
the robot end-effector and the link to be grasping on the object.
Fig. 2 illustrates the constructed AKR for opening a cabinet
door with a physical mobile manipulator platform.

AKR

Virtual Mobile Base

Virtual Attachement

Manipulator Kinematics
Object Kinematics @

Fig. 2: Modeling a mobile manipulation task from the proposed
SMMP perspective. Constructing an AKR involves four key inputs:
the manipulator’s kinematics 7%, object kinematics 7, a virtual
mobile base 72, and a virtual attachment joint seq. Given the artic-
ulated nature of the drawer, its kinematic model requires inversion to
maintain a tree.

AKR modeling for a mobile manipulation planning prob-
lem first involves integrating the virtual mobile base into the
kinematic model of the manipulator. During interactions, the
post-inversion object’s kinematics is further integrated into the
AKR through a virtual attachment joint. The AKR is extended
to the inverted object model’s terminal link while maintaining
its serial chain structure (see Fig. 2). In our application, we
assume that 72 and 7© are known. However, obtaining
the virtual mechanisms and constructing 74 involve more
nuanced operations. The following section will detail these
operations.

Virtual mobile base 77 reflects the motion possibilities of
the mobile base. In Fig. 2, the manipulator with an omnidirec-
tional mobile base can theoretically achieve free, stable motion
on the ground plane. Consequently, a kinematic chain with
three consecutive joints (two perpendicular prismatic joints
are connected in serial to imitate linear motion, followed by
one revolute joint at the rotation center of the mobile base to
imitate angular motion) is sufficient to describe the motion of
the base.

Virtual attachment joint s., characterizes the motion
constraints and spatial relation between the robot and the
scene after integration. As shown in Fig. 2, by inserting the
Seq between the manipulator’s end-effector link v, and an
attachable link v, in the object model, the kinematics of the
mobile manipulator and the manipulated object are integrated.
If a manipulated object 7€ is articulated and the attachable



Algorithm 1: Kinematics Inversion

Input : The kinematics: 7 = (V, S),

The root node of T vy,

The attachable link node: vq.

(not necessarily the terminal node)
Output : The inverted kinematics: 7 = (V, S1V).
// Initialization

1
2 Sinv -
3 // Get kinematic chain from v, to vg
4 (Via,Sra) <« FindPath(T,vr,va);
5 // Inversion of the kinematic chain
¢ foreach {;ij,s]-k} C Srq do
7 .(Tijvg‘_T) — 855, (1K, 2 T) < Sjks
8 if vy is equal to v, then
* o J—1y.
9 s« (rji, . T7);
10 s;‘:j — (rij,1a);
inv inv * % .
1 S — SO {sT, 57 b
12 else
* . Jp—1y.
13 s < (rﬂ,kT );
14 | S < SMu{shh

15 // Inversion of branches
16 foreach v; € V,.q and v; # v, do

17 foreach s;, € S and s;i, ¢ Sra do
J .

18 (T.ik7kT) «— Sjk:» .
19 (Tij,;.T) «— 545, where s;; € S™;
* i J .

20 Sik < (T’,jkv;TkZ),

21 L SV ginv {sjk};
22 fore:ach v; € V and v; ¢ Vyq do
23 if 3s;; € S then

2% L Sinv va U {Sij};

25 // Get the inverted kinematics
26 Tan «— (V’ San);

link is not the root node of 7, its kinematic model must be
inverted before integration to ensure that 74 remains a tree
(i.e., each node within a tree has at most one parent node).

Kinematics inversion process reverses the kinematic model
of the manipulated object while retaining its motion constraints
and geometric consistencies, as shown in Alg. [I] Our kine-
matic tree representation defines transformations from parent
to child link frames, with motion constraints (i.e., joints)
specified relative to the child frame. Therefore, kinematics
inversion requires non-trivial adjustments to each joint’s spatial
transformation, in addition to simple parent-child inversions,
since joints constrain child link motion relative to their local
frame. The algorithm first identifies the main branch (Line 4)
between the base link (the root node of 7)) and the attachable
link (identified in s.,), including all intermediate joints and
nodes. Transformations along this kinematic chain (between
v, and v,) are then updated (Lines 6-14). The motion planner
treats side branches as static, but their proper geometric
transformation (Lines 16-24) remains critical for maintaining
self-collision avoidance in the AKR representation. Fig. 2
illustrates the post-inversion cabinet kinematics and its inte-
gration into the AKR.

From the AKR perspective, we can formulate a single-step
mobile manipulation task as motion planning in A-Space (i.e.,
the configuration space of AKR), with task execution repre-
sented by AKR state transitions. Unlike decoupled approaches
that treated the object as task-specific constraints imposed on
the robot, e.g., [50], the AKR simultaneously incorporates:
1) kinematic constraints for both robot and manipulated object,

2) path constraints for end-effector during interaction, and
3) self-collision avoidance—enabling generation of safe, co-
ordinated base-arm-object motions. By generalizing to objects
with known kinematics, the AKR eliminates task-specific
modeling requirements for diverse objects and environments.
This approach achieves effective whole-body motion optimiza-
tion by eliminating the need for iterative backtracking in base-
arm-object coordination at the task level.

IV. PLANNING IN THE A-SPACE

In this section, we first formulate motion planning problems
for single-step mobile manipulation tasks in A-Space, and
solve them via warm-started trajectory optimization. Then,
we tackle the multi-step SMMP problem through an AKR-
based task planning, supporting the generation of whole-body
trajectories for interacting with multiple objects sequentially,
implemented via three action predicates.

A. Motion Planning in A-Space

Consider a standard single-arm mobile manipulation task,
in which a mobile manipulator interacts with an articulated
object within the scene. The state vectorq' = [¢7, ¢, q°]" €
Qfree describes the state of the virtual mobile base 75, the
manipulator 77, and the articulated object T, respectively.
Notably, these joints belong to a serial kinematic chain C,
which consists of a root node v,, and a non-root node v, as
illustrated in Fig. 2. The remaining joints that do not belong to
C are assumed to be fixed during motion planning. Q™ < R"
is the collision-free subset of A-Space. The motion planning
problem in A-Space is equivalent to finding a T-step path
q1.7 =4q1,q2, . ..,qr) € Q™ which can be formulated and
solved by trajectory optimization.

Following Jiao et al. [1], the trajectory optimization problem
is formulated as:

T-1 T-1
minimize Z ||W ,6q,||5 + Z ||Wa5QtH§v (H

wr i3 =2
hchain(qt) = 07 vt = 1a27"‘aT7 (2)

Hftask(QT) - ggoal”% - fgoal <0, 3)

where Eq. penalizes the overall traveled distance and
overall non-smoothness of the trajectory ¢1.7. W, and W,
are two diagonal weighting matrices for each DoF, dq, and
dq, are the finite forward difference and second-order finite
central difference of q;, respectively. The equality constraint
Eq. (2) specifies the physical constraints of the object or the
environment during interactions. Failing to account for this
type of constraint (e.g., the kinematic constraint of the robot
and the scene) may damage the robot or the manipulated
object, resulting in failed executions. The goal of a mobile
manipulation task is bounded through an inequality constraint
Eq. (3) with a tolerance {gu. The function fuu : R™ — RF
maps g7 from the configuration space Q to the task-dependent
goal space G € R*. For instance, in an object-picking task, fiax
represents the forward kinematics used to compute the robot’s
end-effector pose, while g,,a denotes the end-effector goal
pose before grasping. In a door-opening task, fi,sx maps the
AKR state to the door’s joint configuration, and g, Tepresents
the desired joint angle for the door.



Additional safety constraints are imposed during trajec-
tory optimization. Without loss of generality, we assume an
omnidirectional base and only kinematic constraints in this
paper. However, additional constraints, such as nonholonomic
constraints for non-omnidirectional mobile bases could be
formulated into the optimization problem by incorporating
additional terms [51]]:

Qmin <‘1t <qmaX7 vt: 1727"'7T (4)
\|5qt||w<5qmax, Vi=1,2,...,T—1 5
110Gl lo0 < 0quax, YE=2,3,...,T—1 (6)
Niink Nobj
Z Z |di5tsafe - Sd(Liv Oj)|+ < gdisty N
i=1j=1
Niink Niink
D7 D distare — sd(Li, L)+ < st ®)
im1 =1

where | - | is defined as |z|T = max(z,0). Eqs. () to (6)
are inequality constraints that define the joint capability and
implicitly constrain the workspace of both the robot and the
scene. Eq. and Eq. penalize collisions with obstacles
and self-collisions, respectively. Ny and Ny, are the number
of links that belong to the AKR and the number of obstacle
objects within the scene, respectively. distss is a predefined
safety distance, and sd(-) is a function that calculates the
signed distance between a pair of objects. g5 is a collision
tolerance parameter. The formulated problem is solved through
trajectory optimization [52].

Unlike sampling-based methods, optimization-based motion
generation methods rely on gradient descent algorithms and
can easily become trapped in undesired local minima near
the initial guess [52,/53]. Consequently, a proper trajectory
initialization (i.e., warm start) is essential to improve the op-
timization results. However, the high dimensionality of AKR
presents significant challenges. While sampling-based methods
can provide paths as initialization seeds for optimization, they
become computationally expensive in high-dimensional AKR
spaces. Simple interpolation between start and goal states
is insufficient, as base movements are often constrained by
cluttered obstacles. Solving for coordinated movements simul-
taneously creates a complex optimization landscape with many
poor local minima, making convergence difficult without good
initialization. Therefore, an efficient initialization strategy that
balances computational cost with solution quality is crucial for
making AKR-based planning practical.

Therefore, we devise an A*-based trajectory initialization
method to effectively guide trajectory optimization away from
poor local minima without requiring excessive computational
time. Given the initial state g; and the goal state q,, this
method utilizes A* to find a feasible path from the current
location g7 to the goal location g7 of the mobile base.
Subsequently, it linearly interpolates the manipulator’s joint
state from qu to q_ff'. While the method itself is presented
as a simple design, it is pivotal to our framework’s practical
efficacy. The initialization phase aims to generate coarse,
collision-free base paths (via A*) to guide subsequent trajec-
tory optimization. Without this step, the solver often converges
to local minima—for example, favoring shorter but colliding
base paths over safer, longer ones. Appendix [A] provides quan-

titative comparisons with baselines, effectiveness analysis, and
discussions of trade-offs and limitations.

B. Task Planning for Sequential Tasks

To solve a SMMP problem, a robot must break it down into
a sequence of temporally feasible actions, necessitating task
planning. Following the classic formalization of task planning,
we describe the environment by a set of states £ (of note, £ and
Q are unnecessarily identical). Possible transitions between
these states are defined by A < &£ x &, where a transition
a = {e,e’) € A alters the environment state from e € &
to ¢ € £. The task planning goal is to identify a sequence
of transitions a;.y that alter the environment from its initial
state ¢g € £ to a goal state ey € &;, where £, < € is a
set of goal states. Traditional task planning involves defining
meaningful symbolic actions A and states £ and often assumes
a robot can execute the elementary actions. However, these
symbolic actions necessitate substantial manual design effort
to be instantiated successfully at the motion level. From the
AKR perspective, the action is defined as changes to the AKR
structure and corresponding A-Space, transforming the SMMP
problem into a series of AKR structural modifications.

In this section, we describe how actions defined using
standard planning language (e.g., PDDL [41]) can be used
to properly formulate a task planning problem, and how the
planned actions sequence can be realized by motion planning
within A-Space. We start by making connections between the
action semantics and the actual manipulation behaviors, before
explaining how motion planners process the predicates and
variables in the action definitions.

goto-akr (akr, q1, g2):  This predicate moves the A-
Space state from pose q; to the desired pose g2. It represents
the tasks that do not require interaction with the environment,
wherein the AKR structure remains unchanged. Pure naviga-
tion is a typical action that falls into this category.

pick-akr (akr, o, s): This predicate moves the
AKR to an object, o, with kinematics 7 and extends the
current AKR’s kinematics, by adding a virtual attachment joint
S« S¢q to connect the object and the arm’s end-effector. In
practice, s., encodes both the end-effector’s grasping pose
and the associated grasp constraints between the robot and the
object. pick—akr represents the group of tasks that require
mobile manipulators to interact with the environment, e.g.,
picking up an object or grasping a handle.

place-akr (akr, o, g): This predicate moves the
object, o, connected to akr to an object-specific goal state
g, while the object to be manipulated is incorporated into
the AKR and imposes kinematic constraints. For example, g
represents the target door state (e.g., opened) in door-opening
tasks or the desired object placement location (e.g., onTable)
in object relocation tasks. Once the goal state is reached,
place-akr breaks the current AKR at the virtual attachment
joint where it connects the mobile manipulator and the object,
and the object will be placed where it was disconnected from
the AKR. place-akr represents the group of tasks for which
mobile manipulators stop interacting with the environment,
such as placing an object on the table.

The primary challenge in generalizing actions across objects
stems from heterogeneous task-specific constraints tied to



scenes and objects, which is pivotal for generating executable
trajectories in different mobile manipulation tasks. By em-
bedding these constraints into scene kinematics, the AKR
achieves a unified action definition and enables a general
formulation of trajectory optimization for both rigid and
articulated objects with known kinematics. This AKR-based
formulation alleviates the need to define task-specific actions
for manipulating different objects, which in turn reduces
the need for intermediate subgoals (e.g., moving the mobile
base near the object before manipulation) and allows more
dexterous exploration of the A-Space.

V. SEQUENTIAL MOBILE MANIPULATION PLANNING

In this section, we first present the operation of the plan
refinement algorithm. We then describe how the algorithm
resolves motion infeasibility in sequential tasks by selecting
favorable action parameters through a goal selection process.

A. Plan Refinement for Sequential Tasks

To illustrate how symbolic action predicates (as defined in
Sec. [[V-B) govern the evolution of the AKR structure and
how plan refinement resolves motion feasibility, consider the
example in Fig. 1(a). The robot must first relocate a chair
blocking a door (T1) and then open the door to exit (T2),
interacting with two articulated objects. The action sequence
includes four steps as shown in Fig. 3.

The AKR evolving with each action depicts possible end
states for each step. The first action, pick-akr, generates
a whole-body motion for the akr (virtual mobile base and
manipulator) to grasp the chair. After grasping, akr integrates
the chair’s kinematics into a new akr. The resulting A-
Space captures the kinematics of the mobile base, manipulator,
and chair, while enforcing a planar constraint on the new
akr’s end-effector (i.e., the chair’s base link) to emulate the
chair’s planar motion across the floor. These constraints are
collectively considered during trajectory optimization.

For place-akr, the robot must choose a chair placement
that avoids blocking subsequent door access. We sample valid
configurations within A-Space and illustrate two representative
configurations (second column in Fig. 3(c)). Without consid-
ering future actions, both placements are acceptable, as the
chair no longer obstructs the door. After placing the chair,
the akr detaches it, reverting to the mobile manipulator. The
subsequent pick-akr action finds the path to approach the
door handle. By sampling valid configurations (third column
in Fig. 3), we can distinguish between motion-infeasible (red)
and motion-feasible (green) pairs. Due to the presence of
motion-infeasible pairs, plan refinement becomes necessary.

The plan refinement process acts as a receding horizon,
evaluating feasibility across the action sequence. For instance,
the last configuration in Fig. 3(c) (fourth column) is infeasible
due to the subsequent action that approaches the drawer, which
requires the robot to pass through the door. This example
demonstrates how previously defined actions govern the evo-
lution of the AKR structure and underscores the necessity of
plan refinement in resolving motion feasibility. The subsequent
section formalizes this procedure, focusing specifically on the
selection of action parameters.

pick-akr(chair)

place-akr(chair)

pick-akr (door) place-akr (door)

Fig. 3: An illustration of the proposed plan refinement algorithm
for a sequential task. The task planner first generates a sequence of
symbolic actions representing the evolution of the AKR configuration
space, indicating robot-environment interactions. Then, the plan re-
finement algorithm ensures motion feasibility among sampled AKR
end configurations for consecutive actions.

B. Action Parameter Selection from Key Configuration Set

The AKR-based motion planner requires two sets of action
parameters to generate trajectories. The first, end-effector
poses s, specifies grasps between the robot’s end-effector and
objects during pick—-akr actions. These poses are obtained
through grasp synthesis methods (e.g., [54]) or predefined for
known objects, as grasp generation lies beyond the scope of
this work. The second set, g, defines object-centric states
aligned with symbolic predicates, such as an opened door
or an object placement goal like onTable, and must be
instantiated appropriately within the object’s configuration
space for trajectory optimization [55].

Improper action parameters values can lead to motion infea-
sibility, as they do not fully capture the state of the akr, and
variations in akr states impose different feasibility conditions
on subsequent actions, as illustrated in Fig. 3. While multiple
chair placements are feasible in a bedroom, some configura-
tions (marked red) obstruct the robot from approaching the
door due to self-blocking. This challenge is exacerbated in
confined spaces with limited configuration space. To ensure
feasibility across action sequences, our method jointly opti-
mizes goal states with future steps, resolving conflicts during
plan refinement to avoid such pitfalls.

The exhaustive motion planning for all possible action pa-
rameters is computationally demanding, with time complexity
growing exponentially with action sequence length, rendering
it impractical. To address this challenge, we propose a plan
refinement algorithm designed to efficiently select the goal
AKR state by considering a given number of anticipated sub-
sequent actions. This approach aims to improve the likelihood
of success for sequential tasks.

Specifically, let g,, be a possible goal AKR configuration
for the action a, and Q,, be the A-Space during that
action, and Q,, ., be the Cartesian product of A-Spaces:
Qi Qa, X Qapyy X oo X Qq, .., where [ is the



Algorithm 2: Select KCS

Algorithm 3: SampleValidConfigurations

Input : Action sequence segment: @,y
Current AKR: 7;‘: N
Current AKR state: qq,,
Ouput : Preferred key configuration set: qa

n+l
Params: No. of candidate configurations: NC

No. of clusters: Ny,

No. of anticipated subsequent actions: [
1 Qay_ 1,y < Gap_y)
2 K —{qa, 4.,
3 forien:n+1ldo

4 Ktemp —

5 // Update A-Space according to Sec. [IV-B|.

6 7:,,1, — ConstructAKR(T )

7 // Generate valid conflguratlons within
A-Space.

8 Qa; — SampleValidC’onfigurations(7;‘4_,Nc)

9 // Pruning similar configuratioés through
down-sampling.

10 Qy, < Downsample(Qa,, Ni)

11 // Predlct and store feasible KCS

12 for q4,,_,.,_, € K do

13 for qq, € Qal do

14 if C’heckMotzonFeaszbzlzty(% Qan_15_1>9a;)

then

15 Qa,_1.; < 9ay_1.,_1-aPPeNd(qa;)

16 Kiemp < Ktemp Y {day, 1.}

17 | K« Ktemp

Select KCS of lowest cost
xoO «— SelectBest(K)

gt Mae)

window length suggesting the number (I + 1) of anticipated
subsequent actions. Our aim is to find a Key Configuration
Set (KCS) q:n;n+[ = <qan’qan+17"'7qan+l> € Qa7L:n+l B
that transition among every two consecutive configurations is
valid and efficient.

Alg. 2] details the process. The algorithm takes three inputs:
1) a segment of the action sequence a,.,+;, 2) the current
AKR structure 7, A _,» and 3) the current AKR state qq,,_, -
Parameters 1nclude Nc, the number of candidate configurations
sampled per action; Nj, the number of clusters for down-
sampling; and [, the horizon length for anticipated actions.
The subsequent paragraphs detail phases of the workflow.

A-Space construction (line 6): For each action a; in the
sequence a,., i, the algorithm first updates the AKR structure
7;‘;‘ by integrating the kinematics of the manipulated object
(e.g., a door or chair) into the robot’s kinematics, as detailed
in Sec. III-B. This constructs the A-Space, which encodes the
combined configuration space of the robot and object.

Configuration sampling (line 8): We define Q),, = Q,,
as the finite set of sampled configurations for AKR 7;‘?71,
where each q,, € @, satisfies task-specific goal constraints
and collision-free conditions. To fully explore possible goal
configurations, we formulate an optimization problem:

rlllli_n || hchain (qa ) 5+ || fask (@a;) — Gas 9
s.t. ||hchain(qg,1;)||§ < gchain (10)
||ftask(Qai) —Ga; g < ggoal (11)

qmin < da, < qmax (12)

e Qne (13)

: An AKR: T4
The Set of Vahd Conﬁguratlons Qa;

| max

Input
Ouput :
Params: Max. Cardinality of Qq,:

Max. Tries of IK Calculatlon MAX _TRIES

1 Qai <~ @

2 counts < 0

3 while |Qq, | < |Qq,;|"™™ or counts <MAX_TRIES do
4 qa; — computeIK('T ) //W.r.t. Eq.

5 if qa,; satisfy Egs. 10 then

6 L Qai <~ Qa,; YU Ya;

7 counts++

where Eq. (9) penalizes the violation of the environment and
the goal constraint corresponding to Eqs. (2) and (3), Egs. (I0)
and (TI)) bound the objective with a small tolerance to reduce
undesirable results, Eq. constrains the g,, to be within
the joint limit of the AKR, including both the robot and
the manipulated object, Eq. (I3) ensures g,, is collision-
free in the environment. Alg. [3| details how to solve the
problem to generate a finite ()., for a,. We first randomly
sample goal AKR configurations based on the constructed
AKR 7;‘? from a uniform distribution to initialize computel K
and compute the inverse kinematics problem (i.e., Eq. (9))
numerically on 7;‘4 Solutions satisfying Egs. to li
are added to (),, until reaching its maximum cardinality.
Then, we prune out configurations that are in collisions (i.e.,
violating Eq. (I3)). Note that the collision check is reserved
until the last step because collisions frequently happen in a
confined and cluttered environment, and checking collisions
is computationally heavy.

Configuration down-sampling (line 10): Even after dis-
carding configurations that are in collision, the candidate set
(Qq, often remains large. This can make motion feasibility
checking computationally expensive due to the combinato-
rial nature of validating transitions across a sequence of
actions—requiring up to |Qq, | X |Qa,,i| X ... X |Qa,,.]
checks. While retaining all candidates helps preserve com-
pleteness, in practice, down-sampling the configuration set
can significantly improve planning efficiency by reducing the
number of costly, repetitive feasibility checks. Thus, we down-
sample configurations based on the assumption that those
located close to each other in configuration space (i.e., with
similar joint values and small Euclidean distances) exhibit
similar motion feasibility. This is justified by the nature of our
AKR-based trajectory optimization: Eq. constrains only a
subset of the AKR state variables via fi,s. As a result, nearby
configurations often converge to the same local minima during
trajectory optimization, making it redundant to plan from each
configuration individually.

To down-sample (),, and avoid redundant computations for
similar configurations, we use the k-means++ method [56]
to partition (),, into NNy, clusters by minimizing the variance
within the cluster: Q,, = {Q. ..., Q% } with the correspond-
ing cluster centroid Q Then we construct a downsampled
set Q. = {qal,qal ...,qa } by selecting ¢/F that is closest
to the centroid in each cluster as the key configuration for the
whole action sequence. Note that the cluster centroid itself
may not be a valid configuration.

We acknowledge that the down-sampling step introduces



some incompleteness. However, we wish to clarify that down-
sampling is primarily a practical strategy to improve efficiency,
as further experiments in Sec. VI-D demonstrate. While the
current implementation focuses on empirical performance, we
believe that completeness can be achieved through a more
sophisticated and structured sampling strategy, as suggested
by previous work [47,/49,|55].

Feasibility Checking (line 12-17): As the above procedure
produces a much more compact anmﬂ, checking the motion
feasibility among its elements becomes feasible. Specifically,
checkMotionFeasibility estimates the motion feasibility for
{9a;+9a;,,) by applying the A* algorithm (the map and
base path are reused for trajectory initialization to reduce
computational effort) to find a path between the mobile base
poses encoded in key configurations. We will record the key
configuration in K if there is a feasible base path. In the
example shown in Fig. 3(c), the key configuration in red is
removed because no viable path connects it to the upcoming
action of grasping the door handle or passing through the door.

Optimal KCS Selection (line 19): The procedure iterates
until all actions within horizon [ are checked, resulting in
the construction of K, which consists of feasible KCS. Sub-
sequently, we employ an objective function to penalize the
total traveling distance and select the best KCS ¢ . with
minimal cost:

n+l
min = Y (||Wrigl ,—g)13+[Ws(@?,—¢P)l13) (14)

da,, 1. !
n—lin+l ;j_.

where W i and W p represent weight matrices, and the cost
function exclusively penalizes the traveling distance for both
the mobile base and the manipulator joints between two
configurations.

VI. SIMULATION

This section presents the results from extensive simulations
that evaluate the proposed SMMP framework. The simulations
demonstrate the effectiveness of generating coordinated base-
arm-object motion in the proposed A-Space, quantitatively
compared to several baselines. Additionally, an object rear-
rangement task highlights the advantages of the AKR-based
planning domain design in simplifying the task planning by
reducing unnecessary action predicates of separately moving
the mobile base and the arm. An ablation study on a complex,
18-step long-horizon SMMP task further examines the plan
refinement algorithm.

A. Simulation Setup

The simulated mobile manipulator platform comprises a
Clearpath Husky mobile base and a Universal Robot URSe
robotic manipulator equipped with a Robotiq 2-finger gripper
positioned at the mobile base’s rotation center. The mobile
base is assumed to be omnidirectional during trajectory opti-
mization. As the four wheels can be controlled independently,
its trajectory is then processed by adjusting the orientation of
the mobile base to match the direction of movement, and the
shoulder joint of the manipulator is adjusted accordingly to
ensure the correctness of the trajectory.

B. Comparisons with Baselines

We developed two mobile manipulation scenarios to eval-
uate the benefits of SMMP as compared to approaches that
treat the base and arm separately. The first task, depicted in
Fig. 4(a), is to approach a door and open it by pushing. The
door has a single revolute joint and is located at the end of
a corridor. The second task, illustrated in Fig. 4(b), involves
reaching a drawer in a confined kitchen space and opening it
by pulling its prismatic joint. The initial position of the robot
is randomly selected from within the shaded purple region.

In addition to our SMMP framework, referred to as
SMMP+TO (i.e., trajectory optimization), we introduce three
alternative setups to solve the above two mobile manipulation
tasks for comparing the performance. To compare with a
sampling-based constrained motion planner, we adopt the
well-known RRT-Connect method [57] from the Open Motion
Planning Library (OMPL) [5859] to solve the constrained
motion planning problems formulated by SMMP, referred
to as SMMP+RC. To compare the SMMP-based approaches
with typical non-SMMP approaches, we introduce two addi-
tional baselines that independently compute trajectories for the
mobile base and manipulator. Baseline 1 (BL1) utilizes A*
to search for a feasible mobile base path and subsequently
smooth through trajectory optimization. The arm pose is then
determined by solving the inverse kinematics from the door
handle to the mobile base at each way-point. Building upon
BL1, Baseline 2 (BL2) further optimizes the poses of the
manipulator and manipulated object at each way-point for
collision avoidance.

Notably, our SMMP-based approaches (SMMP+TO and
SMMP+RC) only needs to specify one task goal: the desired
door angle or the desired drawer length to open. In contrast,
non-SMMP approaches (BL1 and BL2) require specification
of the pose of the mobile base when reaching the doorknob
as well as after having opened the door, as the base and the
manipulator are planned individually. We compute the mobile
base’s intermediate poses by sampling from feasible regions
that are empirically determined (i.e., for mobile base poses in
this region, the existence of an arm pose to grasp the handle is
guaranteed); see the orange areas in Fig. 4(a)(b) for reaching,
and the blue areas for final poses.

We evaluate the planning results using four criteria: (i)
success rate as the percentage of task completion without
violating constraints, (ii) the base’s effort as the total base
travel distance, (iii) the arm’s effort as the sum of each joint’s
cumulative angular displacement throughout task execution,
and (iv) the planning time. The results are summarized in
Fig. 4(g). Planning the base, arm, and manipulated object
separately (BL1) results in a success rate of 1% for opening
doors and 36% for opening drawers. The primary cause of the
failures in BL1 is collisions between the mobile manipulator
and the door or drawer, as shown in Fig. 4(e)(f). Although
implementing robot-object collision checks to refine motions
(BL2) enhances the success rate to 51%, the proposed SMMP-
based approaches still outperform the non-SMMP approaches.
Failure cases of BL2 primarily arise from kinematic constraint
violations, such as the end-effector disengaging from the
handle, due to the absence of feasible IK solutions caused
by the bulky mobile base. This highlights the necessity of
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(g) Experiment results. Upper: door opening task; lower: drawer opening task.

Fig. 4: Quantitative comparisons between the SMMP and three baselines in door manipulation and drawer manipulation tasks. The
robot starts from a randomized location within the purple region and (a) opens the door to a specific angle or (b) pulls out the drawer by a
specific length. The orange and blue regions indicate the feasible poses that must be given to the mobile base for baselines. The regions are
empirically found to guarantee a valid IK solution for the robot. (c) and (d) are successful trials of two tasks, respectively, and (e) and (f)
are typical failure cases of baseline methods and the proposed SMMP method. (g) The planning success rate and the box plots with kernel
density plots of the base effort, arm effort, and planning time of the four methods in these two tasks.

simultaneous coordination of the base, arm, and object, as
illustrated in the BL2 failures shown in Fig. 4(e)(f).

The SMMP+TO and SMMP+RC both generate feasible
trajectories for the given task, with SMMP+TO achieving
higher success rates than SMMP+RC. SMMP+TO produces
more efficient trajectories in terms of shorter base and arm
travel distances. Typically, sampling-based motion planners
struggle to incorporate kinematic and safety constraints, ne-

cessitating extra effort to accommodate additional kinematic
constraints @] Fig. 4(e)(f) also demonstrate failure cases of
violating kinematic constraints. The typical failure mode of
SMMP+RC is that the planner fails to find a feasible solution
within the allowable time budget (300 seconds).

Our comparative experiments suggest that SMMP-based
approaches are better suited for complex mobile manipulation
tasks by jointly optimizes base—arm—object movements. More-



over, trajectory optimization proves more effective for solving
SMMP-based motion planning problems due to the intricate
constraints involved. However, this comes at the cost of
increased planning time compared to non-SMMP baselines, as
AKR introduces a higher DoF compared to robot kinematics.

C. Analysis on Efficiency Improvement in Task Planning

By treating the robot base, arm, and object to be manip-
ulated as a whole, the design of the task planning domain
based on the A-Space perspective can offer greater efficiency.
We use an object-arrangement task as an example to quan-
titatively evaluate the improvement offered by the A-Space
perspective, where the robot rearranges m objects on m + 1
tables in a sorted order while satisfying the constraint that
each table can support only one object. Fig. 5(a) shows a
typical example of the initial and goal configuration of this
task with m = 8 objects. Our PDDL implementation, built on
top of AKR (see Appendix C for details), uses fewer predicates
and supports more abstract action representations compared
to domain definitions that decouple base and arm movements
(e.g., [48/55]). Specifically, such separated base-arm domains
typically require: (i) additional predicates to represent the
mobile base’s state, resulting in more state predicates; (ii) an
extra action explicitly dedicated to base movement; and (iii)
more action parameters for manipulation planning.

To produce a task plan, we adopt the PDDL solver from [60]
which employs a hybrid strategy combining a Serialized
Iterative Width (SIW) search-based planner and a Best First
Search-based planner, BFS(f) [61]]. We use PDDL version 2.2
throughout all task planning formulations presented in this
paper. In this study, we ran 50 trials for each setup; see the
results summarized in Fig. 5(b). As task complexity grows, the
planning time and the number of nodes generated during the
search (i.e., memory usage) increase much more slowly using
the AKR-based approach, as compared to separated base-arm
domains, which exhibit an exponential rise. This is because
non-AKR-based task planning requires more action operators
to accomplish each task, resulting in greater search depths.
If there are, on average, N nodes generated at each search
depth level, and a solution is found at depth D, the total
nodes generated is N”. The AKR-based approach requires
fewer action operators, resulting in shallower search depths
and substantially reducing both the number of expanded nodes
and the frequency of backtracking during task planning. In
a task involving rearranging 16 objects across 50 trials, we
observed an average of 76% reduction in search depth with the
AKR-based task planner, leading to a significant enhancement
in planning efficiency alongside a reduction in memory usage.

Taken together, the results of this study demonstrate that
task planning based on AKR significantly reduces the need
for wide and deep exploration in the search process. This
improvement not only improves the efficiency and reduces
memory usage of task planning, but also holds promise for
reducing the number of motion planning calls required in
broader TAMP frameworks.

D. Ablation Studies of Plan Refinement in SMMP

We conducted further ablation studies to evaluate how the
plan refinement algorithm impacts the execution success rate in
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Fig. 5: AKR-based domain specification improves the task plan-
ning efficacy. (a) An example setup of rearranging 8 objects on 9
tables; one table can only support one object. (b) The AKR-based
domain specification allows a solver to search for a feasible plan for
tasks involving re-arranging 2 to 16 objects in significantly less time
while generating fewer nodes in search (i.e., less memory).

long-horizon tasks through simulation. In Fig. 6(a), the robot
is assigned the task of bringing a drink from the fridge to the
bedroom desk (Goal 1) and fetching trash located between
the sofa and the coffee table before depositing it into the trash
can (Goal 2). Notably, the robot has to temporarily place the
drink on the dining table to free its gripper before opening
the bedroom door (-), and must also use the broom to
collect the trash because the space within which it is located is
smaller than the robot’s base ((a13)-(a17)). This poses significant

challenges to the reliability of the generated 18-step task and
motion plan. Please refer to Appendix C for details on the task
planning domain designed for this problem.

In the study, we recorded the robot’s cumulative planning
success rate at each step in the sequential mobile manipulation
over the 18 steps across 5 settings:

« Non—SMMP: The execution trajectories are generated using
Baseline 2 (BL2) as described in Sec. which plans
the robot’s base and arm separately without incorporating
the proposed AKR.

e =0, w/o DS: The end configuration for the robot’s next
action is randomly sampled, without employing plan refine-
ment (as [=0) and down-sampling.

e =2, w/o DS: The end configuration for the robot’s next
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Fig. 6: Ablation studies of plan refinement in SMMP with a simulated household environment. (a) The robot is tasked to place a
drink on the desk in the bedroom and dispose of an object in the trash can. (b) The entire task consists of 18 actions, all represented by the
two symbolic actions. The proposed AKR against a baseline method and different settings of plan refinement. (c) Two possible robot start

configurations that influence the feasibility of subsequent actions.

action is determined using the plan refinement algorithm
without down-sampling. A total of 3 subsequent actions
(including the current one) are considered.

e (=2, w/ DS: The end configuration is determined using
the proposed plan refinement algorithm with down-sampling
enabled. The same 3 subsequent actions (including the
current one) are considered to allow direct comparison with
the previous setup.

e [=4, w/ DS: A total of 5 subsequent actions (including
the incoming action) are considered, with the other settings
remaining the same as in the previous setting.

In each trial, the mobile manipulator is randomly positioned
within the purple-dotted region depicted in Fig. 6(a); a total of
100 trials are conducted to obtain the cumulative success rate.
To ensure a fair comparison, in addition to the initial and goal
states of the environment, both the SMMP and non-SMMP
methods received identical manually defined grasping poses
for all movable objects, though not the corresponding robot
configurations.

In Fig. 6(b), the cumulative success rates for each set, as
the task progresses, underscore the importance of considering
future actions in long-horizon tasks. Without planning in the
A-Space, the motion planner faces particular challenges at
(), when opening the fridge door in a confined space. When
no plan refinement algorithm is applied (i.e., [ = 0, w/o DS),
the success rate significantly drops at because the opened
fridge door and the kitchen table obstruct the robot’s path
to picking up the drink, as illustrated in Fig. 6(c). Without
considering future actions, the robot could easily trap itself
during execution in a crowded scene (i.e., select a poor end
configuration as in ). By anticipating the actions of picking

up the drink and placing it in and (ie., Il = 2, wlo

DS), the robot avoids getting trapped by choosing the green
end configuration instead of the red one, as in Fig. 6(c), despite
this trajectory being less efficient and harder to compute at the
current step, as indicated by a slight drop in motion planning
success rate.

Furthermore, finding end configurations for each action
using the down-sampling method improves the success rate
by excluding robot configurations sharing similar geometric
properties (I = 2, w/ DS v.s. [ = 2, w/o DS), so it is more
likely to find a feasible goal within the computational budget
(max 5 retries are allowed for each action). Looking ahead to
longer horizon tasks (i.e., [ = 4, w/ DS), one could further
improve the success rate, albeit at the cost of increased com-
putational effort. In summary, the plan refinement algorithm
significantly improves the motion planning success rate by
selecting action goals at each step that take into account the
feasibility of future actions, making this method better suited
to long-horizon tasks.

VII. EXPERIMENTS

This section presents the real-world robot experiments that
show that the framework can generate coordinated whole-
body motions for mobile manipulation across various scenar-
ios, solve challenging long-horizon tasks, and generalize to
different robot platforms and tool-use tasks analogous to the
body schema theorem.

A. Robot Platform

In this article, we evaluated the proposed SMMP method
on three robot platforms with different structures.

The mobile manipulator platform consists of dual Univer-
sal Robot URS5e robotic manipulators equipped with Robotiq
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Fig. 7: The system diagram for the mobile manipulator platform. (a) The mobile manipulator’s hardware configuration and communication
diagram. (b) The control diagram of the mobile manipulator platform.
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Fig. 8: Robot performance in mobile manipulation with articulated objects. The robot generates coordinated base-arm-object motions
for (a) unfolding the table, (b) placing the chair, (c) opening the microwave, and (d) opening the closet. The robot consistently maintains
coordination in manipulations, even in the face of more challenging situated constraints due to the obstacles shaded in red. (e) The translational
and rotational traveling distance.

3-finger grippers installed on a Clearpath Ridgeback om- motion generation are performed on a host PC equipped with
nidirectional mobile platform. The on-board computational an AMD Ryzen9 5950X CPU. For perception, we utilize the
hardware is a mini PC with Intel Core i17-10700 CPU. Task and Motion Capture System (MCS), operating at 500 H z, to track



object poses and the mobile base’s position and orientation.
MCS data is processed on its host PC and transmitted to the
onboard mini PC via a local network. It is worth noting that
a single UR5e manipulator serves all tasks in our setup.

Our on-board control processes involve several steps.
Firstly, the MCS tracks the mobile base’s 3D pose and
objects’ 6D poses in the physical environment, which are
then transmitted to the host PC along with the manipulator
configuration (URS5e joint values in this case) to update the
AKR state. Next, the proposed SMMP framework updates
the AKR structure according to the previous action and then
generates the trajectory based on the current action goals
and A-Space. Subsequently, the host PC sends the planned
trajectory to the mini PC for time parameterization, adhering
to hardware constraints. The time-parameterized reference
trajectory is then sent to the corresponding base and arm
controllers concurrently. For manipulator control, we utilize
the built-in trajectory follower of the URSe. For the mobile
base control, we develop a custom PID-based velocity tracking
controller to generate velocity control signals for trajectory
tracking. Fig. 7 is a schematic diagram of the platform.

The aerial manipulator platform setup is similar to
the mobile manipulator platform, the major difference being
the flying vehicle control system. The high-level controller
communicates with the MCS through Ethernet for feedback
and outputs the desired attitude and thrust of each thrust gen-
erator [62]. These commands are transmitted through Crazy
Radio PA antennas (2.4 GHz) to the Crazyflie 2.1 control
boards, where double-loop PID controllers are implemented
for 500 Hz low-level control with onboard IMU feedback.
Appendix [B] provides more details of the system.

B. Coordinated Whole-body Trajectory Generation

In a real household environment featuring diverse everyday
objects with distinct articulation, we showcase the robot’s
adept execution of various mobile manipulation tasks through
coordinated whole-body motions generated by the proposed
method. Snapshots in Fig. 8 depict the robot performing four
typical household tasks: (a) unfolding a flip-top table with
a horizontal revolute axis, (b) rolling a chair that can move
around on the floor plane (i.e., 2D displacement), (c) opening
a microwave and (d) opening a closet, both involving a vertical
revolute axis, with the bulky closet door requiring more
sophisticated motion coordination. By formulating motion
planning problems in A-Space one naturally accommodates
both robot and object movements, resulting in successful and
efficient task execution. This advantage is particularly evident
in Fig. 8(e), in which each manipulation task is rendered
increasingly complex by the presence of new obstacles (high-
lighted in red), and more sophisticated obstacle avoidance
strategies, therefore, become necessary. Notably, for this kind
of task, motion planning using in A-Space shares the same
objectives and goal states, differing only in the constraint that
specifies obstacle configurations in the surrounding space (see
Sec. for details).

We further evaluated the motion planner’s performance
in terms of the efficiency of the trajectories it computes.
By repeating the planning for each scenario in Fig. 8(a)-(d)
five times (with random start locations) and executing the

planned trajectories on physical robots, we reported statistics
on base efforts and arm joint efforts measured by trajectory
lengths in Fig. 8(e), to assess execution efficiency. In general,
surrounding obstacles could constrain navigation, compelling
the robot to compensate by increasing arm movements, and
leading to notably higher joint effort when manipulating the
chair, microwave, and closet.

C. Sequential Mobile Manipulation Planning

Fig. 9(a) showcases a series of the robot in a conducting
complex, long-horizon sequential mobile manipulation task.
The task objectives assigned to the robot are: (Goal 1) retriev-
ing a new tissue box from a closet drawer, placing it on the
tea table, and (Goal 2) disposing of the empty tissue box in
the trash can. As this task involves interactions with various
structures, such as the closet with a revolute joint, the drawer
with a prismatic joint, and other rigid objects while navigating
through confined 3D spaces, the entire task execution consists
of 14 distinct actions. Our method successfully addresses this
SMMP challenge, demonstrating progress at three levels.

At the task level, the difficulties in specifying the planning
domain and the computational cost in solving the task are
reduced, since only two action operators are required. These
improvements are quantitatively evaluated in a simplified setup
(Sec. VI-C). Throughout execution, the task planner correctly
determines the sequence of actions, such as opening the closet
before accessing the drawer, and vice versa when closing them.
This suggests that our task planning setup faithfully describes
the scene and the associated state transitions.

At the motion level, motion planning problems instantiated
from symbolic actions are effectively solved, resulting in
well-coordinated movements of the robot’s base, arm, and
manipulated object during mobile manipulation (see tracking
performance in Fig. 10). These whole-body motions enable
the robot to perform interactive tasks within confined spaces.

At the goal level, selecting a robot configuration that aligns
with the motion planner’s goal at the end of each action is
crucial for the overall success of the task. For instance, in
action as : place-akr (closet), the robot could attempt
to open the closet door from either the left or right side.
Our plan refinement algorithm successfully accounts for the
subsequent action of pulling out the drawer (a3) and therefore
selects a robot configuration such that the door is opened from
the left, thus avoiding potential obstructions from the nearby
carpet and the closet door that would have just been opened.

These three advancements collectively enable a robot to
conduct SMMP tasks proficiently. Fig. 10 illustrates the
tracking performance of the mobile manipulator. The results
demonstrate that the proposed SMMP method can generate
executable trajectories that are trackable by the physical robot.

D. Versatility of the Proposed SMMP Framework

The advantages of formulating SMMP from the A-Space
perspective extend beyond specific robots or tasks. Since
kinematic relationships can characterize various patterns of
a robot’s movements and a wide range of task goals, our
SMMP framework can be extended to other non-traditional
setups in mobile manipulation. As illustrated in Fig. 11(a),
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by applying SMMP to an over-actuated UAM, which consists safety - an increasingly challenging task when interacting with
of an over-actuated Unmanned Aerial Vehicle (UAV) and a the surrounding environment. We, therefore, implemented a
3-DoF manipulator, we open up new horizons in sequential hierarchical control framework for the aerial manipulator to
multi-step aerial manipulation. Unlike fundamentally stable stabilize itself and track desired trajectories [62}/63].

ground robots, aerial robots have to prioritize their own P]anning in the A-Space also allows a robot to incorp()rate
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Fig. 11: Applications of the AKR for different robots and robotic tool-use tasks. (a) Planning sequential aerial manipulation tasks for
an over-actuated Unmanned Aerial Manipulator (UAM). By abstracting the over-actuated UAV’s flight as a 6-DoF floating mobile base and
combining the kinematics of the 3-DoF manipulator, the proposed SMMP framework is applied to solve the task of placing an object into the
drawer. (b) The AKR allows the robot to utilize manipulated objects as tools to fetch the litter with a broom and (c) to close the unreachable

closet door with a stick.

external objects as body extensions for non-prehensile manip-
ulation or tool uses. Fig. 11(b)(c) illustrate two robotic tool-use
tasks modeled and computed by SMMP. In the first task, the
robot utilizes a broom to sweep away litter located between
the tea table and the sofa, which the robot cannot approach
directly. In the second task, the robot plans to use a stick to
close the closet’s upper door which is unreachable by its ma-
nipulator. These results demonstrate that our framework is not
limited to a specific setting; it can be applied to different robot
embodiments and has the potential to significantly expand a
robot’s capabilities by incorporating grasped objects as tools,
a crucial step forward in open-world, task-rich environments.

VIII. DISCUSSION AND CONCLUSION

A. Key Findings

Coordinated Robot-scene Motion in Human Environ-
ments: Through a series of single-step and multi-step mobile
manipulation tasks in Sec. VI-D and Sec. |VII-C| we demon-
strated the effectiveness of the proposed SMMP framework in
generating coordinated robot-scene motions in long-horizon
tasks. This type of motion coordination in various settings
is crucial for robots operating in human environments that
have been primarily designed with bipedal locomotion. Indoor
scenes are typically organized to meet human activities, but
can be too confined and cluttered for mobile manipulators
to navigate and interact with [64]. Although prior work has
improved the robustness and efficiency of planning algorithms
in confined and cluttered environments [29,/65,/66[, the ab-
sence of coordinated whole-body motion still fundamentally
limits robotic capabilities in many tasks (see supplementary
video for examples). After integrating the manipulated ob-
ject’s kinematics with that of the robot, planning in the A-
Space can facilitate a general and efficient formulation for
robots needing to manipulate a variety of objects with whole-
body motions, irrespective of the robot’s own morphology.
This is evidenced by our experimental results in Fig. 8 and
Fig. 11, where the proposed approach successfully generates
coordinated base-arm-object trajectories across a variety of
scenarios involving a ground mobile manipulator and an aerial
manipulator. The robots effectively handle interactions with

a range of articulated furniture, like doors and drawers, and
achieve significantly higher success rates compared to non-
SMMP methods, as quantified in Sec. [VI-B]

Integrated Representation for Sequential Tasks:  Suc-
cess in solving SMMP tasks relies heavily on the fluent
execution of each single-step action. One notable advantage
of framing motion planning problems based on the integrated
robot-scene representation, AKR, is the clarity of directly
defined goal configurations (i.e., the action parameters) at each
step in terms of object states, eliminating the need to specify
robot states as part of the goal. For instance, in the task
of opening a microwave in Fig. 8(c), the goal is to set the
microwave door to a particular angle. The robot’s pose and
mobile base location are less critical, as they are optimized to
adhere to the situational constraints (i.e., the human’s location)
during motion planning, which have been incorporated into
the A-Space. Consequently, in Fig. 8(e), when the level of
confinement for the same task increases due to obstacles, the
AKR-based planner readily adapts base-arm coordination and
produces different trajectories to achieve the same task goal.
In contrast, planning methods that treated robot base and arm
movements separately require separate goal specifications and
action predicates for each component; see Fig. 5. While this
approach may be computationally efficient in motion planning,
it presents challenges in coordinating movements, especially
when dealing with environmental constraints imposed by ex-
ternal objects. As shown in Fig. 4(g), baselines that separate
base and arm planning suffer a significant drop in task success
rates due to the lack of coordination between their respective
end configurations. This misalignment becomes particularly
problematic in complex SMMP setups, where the iterative na-
ture of TAMP causes failed motion planning attempts to trigger
frequent backtracking and replanning, ultimately leading to
failures.

B. Limitations and Future Directions

Efficient Planning for Responsive Operation: As reported
in Sec. A-Space planning times, produced via trajectory
optimization, are notably faster than sampling-based methods
but still exceed those of baselines due to the incorporation of



additional DoFs. While the proposed SMMP framework can
generate flexible and coordinated trajectories within confined
spaces, it may be less suitable for applications that require
responsive operation. A recent study by Sundaralingam et
al. introduces a potential solution by parallelizing trajectory
optimization computations on GPUs [67]]. Their approach
demonstrates promising results, speeding up times by a factor
of 60. By integrating this GPU-accelerated motion generation
library with our SMMP framework, we achieve high-DoF
dexterity and responsive operation [68]. Furthermore, our ap-
proach demonstrates its applicability across a series of realistic
scenes adapted from iThor [69] (see Appendix C for details),
reinforcing its potential for real-world deployment.

Obtaining Scene Kinematics: We also acknowledge that
the success of the proposed SMMP framework relies heavily
on precise knowledge of scene kinematics, which may not
always be available in unstructured environments. Recent
advancements in computer vision have enabled the reconstruc-
tion and inference of part-level relations among objects with
articulation [70-72], offering the potential to acquire object
kinematics from vision alone [24,73]. Still, the precision
required for manipulation exceeds the current state-of-the-art
in computer vision techniques. Integrating tactile feedback at
the robot’s end-effectors (e.g., vision-based tactile sensors) and
employing advanced adaptive controllers could enhance robot
execution in scenarios with uncertain object kinematics due to
perception noise. Moreover, by leveraging readily available
environment datasets with known kinematics such as [69],
the proposed SMMP framework can serve as an effective
data generation platform, addressing the persistent challenge
of high-quality data collection in learning-based manipulation
research [4].

Interacting with Scenes: Perceiving human-made scenes
and the objects within them naturally guides the actions of
agents [74,75], forming the foundations for accomplishing
complex tasks. However, existing approaches typically focus
on capturing 2D or 3D occupancy information for obstacle
avoidance during navigation or pick-and-place manipulation.
To tackle longer-horizon tasks, it is crucial to incorporate
actionable information, such as the actions that entities in the
scene can perform and the physical constraints they impose,
into robot planning [14,]24]. Identifying what information can
be considered actionable and beneficial for subsequent ma-
nipulation tasks is a fundamental challenge addressed in this
article. Our investigation into SMMP suggests that kinematics
could serve as a key bridging stone between perception-based
scene understanding and control-based manipulative robot
actions.

C. Conclusion

In this article, we introduced the concept of the Aug-
mented Kinematic Representation (AKR), which integrates
scene kinematics into the robot’s own model to construct a
unified Augmented Configuration Space (A-Space) for solving
sequential mobile manipulation tasks. We developed a tri-
level planning framework that combines PDDL-based task
planning, trajectory optimization, and plan refinement, and
validated it extensively through both simulation and real-
world experiments. Our results demonstrate the framework’s

effectiveness in generating coordinated whole-body motions,
even in confined spaces with articulated objects, and its ability
to execute complex tasks involving up to 14 sequential actions
without interruption. As kinematics offers a general repre-
sentation of constrained motion beyond robotic morphology
alone, the proposed AKR and A-Space framework holds strong
promise for broad application across diverse robot platforms
and challenging manipulation scenarios.

APPENDIX

A. Trajectory Initialization

We implement two trajectory initialization baselines [76]:
1) Stationary: The trajectory ¢;.7 is initialized by way-points

q; that are the same as the initial pose q;.

2) Interpolated: The trajectory qi.7 is initialized by way-
points that are linearly interpolated between the initial pose

q; and the goal pose qr.

Next, we investigate how different trajectory initialization
methods affect the planning results in three scenarios; see
Fig. 12(a)-(c). The robot’s task is to pick up the rigid stick
and use it to reach a target indicated by the red cube. This
task consists of two steps: i) navigate to the stick and pick it
up, ii) navigate to and reach the target with the stick. The three
scenarios designed for evaluation are increasing in complexity:
no obstacle (Fig. 12(a)), two small obstacles (Fig. 12(b)), or
a much larger one (Fig. 12(c)). Experimental results reported
below are the average of 50 different initial poses, each with
10 times.

A successfully optimized trajectory is a converged result
without violating any constraints (e.g., collisions). Fig. 12(d)
compares success rates. When the environment is clean (Sce-
nario 1), even the simplest Stationary trajectory initialization
method performs well. When there is additional complex-
ity introduced by the obstacles (Scenario 2), the Stationary
method deteriorates, whereas the Interpolated method still
maintains a high success rate. When the navigable space
is significantly reduced (Scenario 3), only the proposed A*-
based initialization method can consistently perform well to
generate feasible plans. Taken together, experimental results
indicate that combining the proposed A*-based initialization
with the optimization-based motion planner can well handle
the challenging motions that require combining navigation and
manipulation in cluttered space with obstacle avoidance.

B. Unmanned Aerial Manipulator Platform

The Unmanned Aerial Manipulator (UAM) platform con-
sists of an over-actuated omnidirectional flying vehicle and
a 3-DoF robotic manipulator [63]]. The flying vehicle inte-
grates four omnidirectional thrust generators, each built with
a generic quadcopter (Crazyflie 2.1 control board) and a 2-DoF
passive gimbal mechanism [77], enabling independent position
and attitude tracking capability. The robotic manipulator com-
prises three serial rotational DoFs and a parallel gripper. Four
Dynamixel XC330-M228-T motors actuate the manipulator,
while a Raspberry Pi Zero and a Dynamixel U2D2 converter
are fitted to the flying vehicles to receive wireless control
commands. Fig. 13 is a schematic diagram of the platform.
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