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ABSTRACT

Coordinated hunting is widely observed in animals, and sharing rewards is often considered
a major incentive for its success. While current theories about the role played by sharing in
coordinated hunting are based on correlational evidence, we reveal the causal roles of shar-
ing rewards through computational modeling with a state-of-the-art Multi-agent Reinforce-
ment Learning (MARL) algorithm. We show that counterintuitively, while selfish agents
reach robust coordination, sharing rewards undermines coordination. Hunting coordination
modeled through sharing rewards (1) suffers from the free-rider problem, (2) plateaus at
a small group size, and (3) is not a Nash equilibrium. Moreover, individually rewarded
predators outperform predators that share rewards, especially when the hunting is difficult,
the group size is large, and the action cost is high. Our results shed new light on the actual
importance of prosocial motives for successful coordination in nonhuman animals and
suggest that sharing rewards might simply be a byproduct of hunting, instead of a design
strategy aimed at facilitating group coordination. This also highlights that current artificial
intelligence modeling of human-like coordination in a group setting that assumes rewards
sharing as a motivator (e.g., MARL) might not be adequately capturing what is truly nec-
essary for successful coordination.

Keywords: animal coordination, collective hunting, free-rider problem, multi-agent reinforcement

learning, sharing reward.

1. INTRODUCTION

Coordinated hunting has been widely observed in the animal kingdom in many different species,

such as wolves (MacNulty et al., 2014), hyenas (Holekamp et al., 1997), dolphins (Gazda et al., 2005),

ravens (Yosef and Yosef, 2010), and hawks (Bednarz, 1988), whereas the majority of in-depth discussion

on coordination mechanisms focuses on chimpanzee behavior. Chimpanzees hunt for meat in all known

populations, with the red colobus monkeys being the primary prey where both species exist (Newton-Fisher,
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2007). Anthropological studies based on field observations suggest that chimpanzees exhibit sophisticated

human-like cooperation, such as playing complementary roles during hunting, which includes driv-

ers, blockers, chasers, and ambushers (Boesch, 2005). Consequently, understanding the motivation of

such coordinated behavior can provide insights on understanding the evolutionary history of human

cooperation.

Sharing rewards has been considered as a major incentive for animals’ success in coordinated hunting,

especially for chimpanzees. It seems to encourage participation in group hunting, which leads to higher

hunting success (Samuni et al., 2018). Moreover, the literature claims that sharing rewards further con-

tributes to chimpanzee bonding through reciprocity (Nishida et al., 1992; Mitani and Watts, 2001), reducing

begging harassment (Gilby, 2006; John et al., 2019), exchanging meat for sex (Nishida et al., 1992), and

securing dominance (Nishida et al., 1992).

However, since existing animal studies are mostly observational, they can only indicate a correlation,

while the causal effects of sharing rewards on coordination remain unclear due to the lack of causal

evidence from formal experimental manipulations. In fact, it has been argued that sharing rewards is neither

necessary nor sufficient for coordinated hunting. It could be unnecessary, since chimpanzee coordinated

hunting may not be based on any expectation of reward sharing, and rather be mainly driven by individual

selfish interests (Tomasello et al., 2005). In such a case, during hunting, each individual chimpanzee

simply takes actions to maximize its self-interest based on other agents’ locations. Sharing rewards could

be insufficient to support coordinated behavior as well. One critical challenge for coordination is the free-

rider problem (Olson, 1989): Rational individuals benefit from the shared public goods even if they do not

pay individual action costs. However, the free-rider problem has not been highlighted in the above ob-

servational studies. Theories of human cooperation suggest that other cognitive infrastructures are nec-

essary to solve this issue, including cheater detection and punishment (Clutton-Brock and Parker, 1995),

commitment (Gilbert, 1999), and fairness (Arneson, 1982). Invoking these normative and moral concepts in

coordinated hunting requires a stronger definition of cooperation beyond sharing rewards (Tomasello,

2009).

With the aforementioned conflicting evidence and viewpoints from observational studies, here we study

the causal effects of sharing rewards on the performance of coordinated hunting from a modeling per-

spective. Several studies have investigated the ultimate mechanisms explaining cooperation focusing on the

consequences at the population level (Boyd et al., 2003; Nowak, 2006; Gross and De Dreu, 2019). In this

study, we focus on the proximate mechanisms (Mayr, 1961; Tinbergen, 1963) and study the causal effects

of sharing rewards on coordinated hunting by modeling individual agents’ actions (Bonabeau, 2002) using

reinforcement learning (RL). RL is a prominent model for animal learning with deep roots in psychology

and neuroscience (Liu et al., 2021; Peterson et al., 2021). Through trial and error, RL approximates the

optimal action policy through maximizing long-term expected rewards (Sutton and Barto, 2018). RL is also

a state-of-the-art artificial intelligence model, which, combined with deep neural networks (LeCun et al.,

2015), is able to generate complex intelligent behaviors, reaching human expert-level performance in games

like Atari (Mnih et al., 2015) and Go (Silver et al., 2016, 2017).

Multi-agent reinforcement learning (MARL), as an extension of RL, is consistent with the empiricist

theory that social skills are accumulated through trial and error (Hayek, 2011). It has been successfully

applied to various challenging group coordination scenarios, such as autonomous driving coordination

(Shalev-Shwartz et al., 2016) as well as teaming in Dota 2 (Berner et al., 2019) and StarCraft (Vinyals

et al., 2019). MARL offers a generic solution to different applications simply through adjusting the

relationship between agents’ reward functions. For competition, the reward functions are zero-sum. Cri-

tically, MARL defines cooperation as having agents align their rewards through the same reward function

(Busoniu et al., 2008), effectively splitting the group reward evenly among all cooperating agents. With the

critical position taken by reward sharing in MARL, it is theoretically important to reveal the causal role of

reward distribution in generating coordinated hunting with this model.

One particular algorithm in MARL, multi-agent deep deterministic policy gradient (MADDPG) (Lowe

et al., 2017), has been successfully applied to a multi-agent-coordinated hunting game through agents

sharing rewards. It shows that a group of predators can learn from scratch to coordinate the hunting of an

intelligent prey. The algorithm is decentralized at the top level, with each agent learning its own model,

instead of having a unified policy copied for all cooperative agents (Fig. 1). The training is cognitively

realistic in two ways. First, the training involves cognitive constraints. When taking actions, each agent

can only refer to its own observation, without accessing observations from other agents. Second, the model
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is cognitively intelligent. Each agent treats others as actual agents, instead of random objects in the

environment, and predicts what they will do next, a process that can be interpreted as a primitive version of

Theory of Mind (Wellman, 1992). Moreover, an agent’s evaluation of an action is based on the context of

all agents’ states and predicted action, echoing Tomasello’s theory of coordinated hunting (Tomasello

et al., 2005). Agents will then update their policies to output actions that would improve this evaluation.

Still, the planning is individualized because agents are only concerned with their own actions while

evaluating the situation stemmed from a holistic perspective.

However, as the focus of the MADDPG study is not in explaining realistic animal behavior, there are

critical artificial components that make the conclusion not generalizable to animal hunting. First, the

framework takes sharing rewards as an assumption and does not provide a comparison with cases using

individual rewards, which fails to provide causal evidence for the effect of reward distribution. Second, the

predators and prey have no action cost in the environment; thus, the free-rider problem is avoided alto-

gether, since the only motivation for free riding is to avoid individual costs in cooperation. Third, to

achieve better results in training, the environment rewards predator agents for ‘‘bites,’’ instead of ‘‘kills,’’

to create frequent reward signals, which helps with the model training. However, such a setting is unre-

alistic and even opposite in the real-world hunting scenarios, where only kills matter and can provide

substantial material rewards. Bites without kills may in fact provide a negative reward to the predator, as it

introduces chances of injuries and costs efforts. As such, it remains nebulous whether the computational

model can indeed handle scenarios with only kill signals.

To test the causal effects of sharing rewards in modeling animal-coordinated hunting, we employ a

hunting game (Fig. 2) with the following settings: (1) Predators have individual action costs that are pro-

portional to the force they exert. (2) Predators are rewarded only after they successfully kill the prey, which

happens in 20% of all biting instances (defined as collisions with the prey). (3) After killing the prey, the

distribution of the spoils is systematically manipulated, ranging from selfishly dominant to evenly sharing.

More details are explained in the following section.

2. MODEL DESIGNS

In the experiments, we systematically test MADDPG’s performance in coordinated hunting with model

experiment manipulations inspired by anthropological and animal studies.

Environment
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FIG. 1. Illustration of MADDPG algorithm with three agents. The MADDPG algorithm incorporates centralized

evaluation and decentralized acting: Each agent i only has access to its own observations Oi to choose action Ai. When

evaluating its action, each agent incorporates all other agents’ observations to predict their actions (Aij denotes agent i’s

prediction of agent j’s action-to-take) and then use the observations and action predictions to form a centralized

evaluation Qi for its own action. Agents would then update their policies to output actions that generate improved

values. MADDPG, multi-agent deep deterministic policy gradient.
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2.1. Reward distribution among predators

Field observations indicate that proximity to prey at the moment it was killed plays an essential role in

how chimpanzees decide to split the spoil ( John et al., 2019). Here we control the reward distribution

among predators as a function of the distance-to-kill. Sensitivity to the distance-to-kill is essentially a

selfish index. With a high selfish index, the reward distribution concentrates on the predators close to the

kill. When the predators are purely selfish (i.e., with an infinite selfish index), after one predator kills

the prey, it will only reward itself since itself is the one closest to the prey. With a low selfish index, the

rewards will be broadly dispersed. When the predators are purely unselfish (i.e., zero selfish index), the

reward will be evenly distributed, regardless of agents’ distance-to-kill. All predators follow the same mech-

anism in the same condition. Formally, we define the reward distribution as an exponential function of

the distance-to-kill, such that

Ri / di + 1 - kð Þ- s
(1)

where an agent i with di distance-to-kill receives Ri proportion of the reward, with selfish index s. The

constant k denotes the minimum distance between two agents.

2.2. Action costs inducing the free-rider problem

Agents are motivated to free ride in coordinated hunting only to avoid the individual costs (Olson, 1965,

1989). As the action cost increases, agents would prefer to stay static to reduce the individual action costs

while at the same time obtain allocated rewards. Accordingly, to test the severity of free-rider problems as a

function of the reward distribution, we introduce action costs as negative rewards added to agents’ reward

functions. At each step, the action cost is proportional to the force exerted by agents, with the action cost

for agent i, Ci = a �Fi, where Fi is the force exerted by agent i, which is the output from the agent’s policy

network and denotes the action taken at the time step; a denotes the action cost ratio in the specific

condition. The action costs are applied to individual agents no matter which reward mechanism they take.

2.3. Group size

Evidence in animal studies has shown that hunting party size is positively correlated with the success

of the hunters for many different species (Bednarz, 1988; Creel and Creel, 1995; Mitani and Watts, 1999;

MacNulty et al., 2014; Samuni et al., 2018). In this study, we test how the reward distribution interacts with

the group size by having different numbers of predators in the group.

2.4. Prey agility

Hunting risks influence the hunting behavior of many species. Wolves display a higher level of par-

ticipation when hunting is riskier (MacNulty et al., 2014). Chimpanzee hunting has a low success rate and
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FIG. 2. An illustration of a successful coordination policy. (A) One frame of agents’ motions during coordination.

Predator 1 chooses to move upward, potentially to block the prey’s movement (as a ‘‘blocker’’), instead of directly toward

the prey (as a ‘‘chaser’’), indicating a sophisticated coordination strategy; (B) Predator 1’s learned value landscape, with

brighter shading indicating higher future expected rewards, conditioned on others’ positions and predator 1’s predictions

of others’ actions. The predator’s policy encourages itself to move toward the position with a greater value.
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thus renders hunting an unnecessary activity for some groups, and some choose to hunt only in a situation

of full nutritional abundance (Newton-Fisher, 2007). To evaluate the interaction between reward distri-

bution and hunting risks, here we manipulate one factor of hunting risks, prey agility, by varying the speed

of prey.

3. RESULTS

Our results indicate that there are significant main effects for all four variables, and selfish index is

significantly intertwined with all three other variables (second-order multiple regression model, p < 0:001

for all terms, see Supplementary Data). In our further analysis, we investigate the two-way interaction

terms by aggregating the other two conditions (Fig. 3). Our results indicate that the performance (i.e., the

number of kills in one episode) of selfish agents increases linearly with the group size [linear regression,

p = 0:004, line (B)], while unselfish agents’ performance remains the same or even drops when having a

larger group [line (A), p = 0:013]. Taking the group size of 6 as an example [line (c)], without loss of gen-

erality, the more selfish the predators are, the better their performance (p < 0:001). The change is mono-

tonic, with the most selfish predators achieving the best performance (Fig. 3A).

The performance of all agents decreases as the action cost increases (p < 0:001), and increasing action

costs hurt unselfish agents more than selfish agents—unselfish agents fail to obtain any rewards as the

action cost reaches 0.01 level, whereas selfish agents still maintain a high level of performance even under

the largest action cost condition (Fig. 3C). Furthermore, more selfish agents have their action force less

sensitive to increase in action costs. The most unselfish agents decide almost not to move at all when there
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FIG. 3. Modeling results visualized as landscapes spanned by selfish index and one of the other three variables.

(A) Performance of agents under different selfish index and group size, with highlighted lines denoting performance of

unselfish agents [line (A)], selfish agents [line (B)], and performance of groups of size 6 [line (C)]. (B) Performance of

agents under different selfish index and prey speed. (C) Performance of agents under different selfish index and action

cost. (D) Agents’ total force exerted under different selfish index and action cost.
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is a small action cost (Fig. 3D). Such a result strongly indicates the presence of the free-rider problem

under the reward-sharing mechanism. Lastly, as the speed of prey increases, the predators’ performance

decreases under all reward mechanisms, with the most selfish agents performing the best in all conditions

(Fig. 3B).

3.1. Equilibrium testing

Having shown that sharing rewards cannot find a robust coordination strategy through learning, we

further explore whether, given a successful coordinated policy, coordination can be maintained under

sharing rewards. It will demonstrate whether successful coordination is a Nash Equilibrium through sharing

rewards. In this study, we pretrained models from the condition with the highest group performance, which

comes from the selfish predator group, for [30,000, 60,000, 90,000] episodes to manipulate the coordination

level of the agents. The models were then further trained under both zero and infinitely high selfish indices

with 120,000 training episodes for each condition in total.

Our results indicate that agents’ performance remains similar before and after switching when there is no

action cost, as no free-rider problem is involved (Fig. 4A). However, under conditions with action costs, the

models significantly deteriorate after switching to the reward-sharing mechanism (Fig. 4B). This is evi-

denced by comparing models’ final performance (after 120,000 episodes) with the performance at the

switch (t = - 16:41‚ p < 0:001) for switching at 30,000 episodes; t = - 50:35‚ p < 0:001 for switching at

60,000 episodes; t = - 12:03‚ p < 0:001 for switching at 90,000 episodes. While final performance of the

models switched to training with individual rewards significantly drops, performance of models trained

with selfish rewards all along increases monotonically during training (Fig. 4). More details on training are

attached in the Appendix (included in the Supplementary Material). We conclude that successful coordi-

nation through sharing rewards is not an equilibrium under conditions with action costs, since all agents’

policies deviate from it in further training.

4. DISCUSSION

Our results suggest that sharing rewards is neither necessary nor sufficient for modeling animal-

coordinated hunting behavior with RL. It is unnecessary since models without any sharing (selfish agents)

achieve good training results in the environment and even outperform agents that share rewards (unselfish

agents). It is insufficient for three reasons. First, our results indicate a free-rider problem for unselfish
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Always individual
Switch to shared at 30k

Switch to shared at 60k
Switch to shared at 90k

cost-action ratio = 0 cost-action ratio = 0.02
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Number of Training Episodes
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FIG. 4. Model performance with further training for equilibrium testing. Models are trained using the individual

reward mechanism for [30,000, 60,000, 90,000] episodes, after which they are further trained with either individual

reward or shared reward until 120,000 training episodes in total. The figures illustrate agents’ performance with a 95%

confidence interval under (A) zero action cost and (B) 0.02 action cost.
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agents. Specifically, when agents share rewards and have their movements subject to individual action

costs, they become reluctant to move, which negatively affects the group’s performance. Second, unselfish

agents’ hunting performance does not improve when the group size increases, which contrasts with the

observational evidence that hunting success should be positively correlated with the group size. Third, the

reward-sharing mechanism cannot maintain a coordinated performance, and agents’ actions deviated from

a well-trained policy, possibly due to the free-rider problem.

Hence, our results support the theory that agents with selfish interests (e.g., chimpanzees) are capable of

forming successful coordinated actions (Tomasello et al., 2005; Rossano, 2018). As such, sharing rewards

might simply be a byproduct of chimpanzee hunting, instead of an intelligent strategy or the cause of a

strong coordination performance, since the hunting performance deteriorates as the reward distribution gets

more distributed. Note that our conclusion is based on modeling individual agents’ reward-maximization

behavior with internal structures and therefore applies to small-group hunting, which is the common scenario

for mammals. Modeling coordination behavior in groups with hundreds or thousands of agents may require

population-based algorithms.

MARL has been taken as a competitive model of cooperation through agents sharing rewards. However,

our results indicate that this mechanism is not a required precondition for generating coordinated behavior

and might even produce worse performance than training without such assumption. Suffering from the free-

rider problem, the coordinated hunting behavior generated by multiple agents sharing rewards is indeed a

special case when the action cost is zero. Failure of MARL through sharing rewards also suggests the

limitation of trial and error in forming social coordination, which may explain why while all animals can

learn from trial an error, none of them can form human-like social institutes. Sharing, as a crossculturally

acknowledged virtue, should play a critical role in modeling coordination. To go beyond animal-like

selfishness-based coordination, human-like cognitive processes need to be incorporated beyond using a

generic learning algorithm.

One such framework is shared agency, which proposes that humans form a shared intention and work on

tasks as a whole during cooperation (Tomasello, 2009). Recently, the idea of shared agency has been

modeled through Bayesian theory of mind as inferring the relationship of utilities among agents (Kleiman-

Weiner et al., 2016; Shum et al., 2019). In our work, we have extended the shared agency model into

coordinated hunting using a framework called Imagined We. In this framework, agents jointly imagine that

they are controlled by a super-agent We and would then make action plans based on the intention of the We

agent, instead of thinking only from their own perspective. In a task where the superior agility of prey

makes successful hunting depend on predators coordinating and persistently pursuing a single prey among

multiple prey, it has been shown that the Imagined We model outperforms RL algorithms both under

sharing and individual reward conditions (Tang et al., 2020, 2022).
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