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Object Gathering with a Tethered Robot Duo
Yao Su1 Yuhong Jiang1 Yixin Zhu1,2 Hangxin Liu1

Abstract—We devise a cooperative planning framework to
generate optimal trajectories for a robot duo tethered by a
flexible net to gather scattered objects spread in a large area.
Specifically, the proposed planning framework first produces a
set of dense waypoints for each robot, serving as the initialization
for optimization. Next, we formulate an iterative optimization
scheme to generate smooth and collision-free trajectories while
ensuring cooperation within the robot duo to gather objects
efficiently and avoid obstacles properly. We validate the generated
trajectories in simulation and implement them in physical robots
using Model Reference Adaptive Control (MRAC) to handle
unknown dynamics of carried payloads. In a series of studies, we
find that: (i) a U-shape cost function for maintaining separation
distance is effective in planning cooperative robot duo, and (ii)
the task efficiency is not always proportional to the tethered net’s
length. Given an environment configuration, our framework can
gauge the optimal net length. To our best knowledge, ours is the
first that provides such estimation for tethered robot duo.

Index Terms—Cooperative path planning, optimization, teth-
ered WMRs, adaptive control.

I. INTRODUCTION

WE consider the task of gathering and carrying objects
scattered on the floor by deploying two Wheeled

Mobile Robots (WMRs) tethered by a flexible net or rope
as a duo. Compared to picking and placing individual objects
one by one, this setting is more intriguing and compelling
for robots to collect small items spread across a large area
autonomously. Fig. 1a showcases two similar tasks in the
physical world that share a similar spirit, wherein humans
adopt a net to collect scattered objects with high efficiency.

The tethered robot duo must resolve two challenges. First,
how to effectively generate cooperative trajectories spanned
between two individuals? Despite a robot duo could accom-
plish more complex and dexterous tasks than a single robot [1],
the physical connection among it also introduces additional
constraints in planning. Compared with prior work concerning
rigid connections (e.g., [2, 3]), planning for the robot duo
with a non-rigid connection (e.g., a rope or a net) is more
challenging [4, 5]; one has to consider the task goals, obstacle
avoidance, and net shape maintenance through individual’s
behaviors. Second, the tethered robot duo is subjected to
increasing payloads during operation. In addition to the fric-
tion force introduced by the net, the dragging force increases
significantly and deteriorates the trajectory tracking of each
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(a) (b)
Fig. 1: (a) Two examples in daily life. Humans use long/flexible
structures to gather scattered objects, a similar setup akin to the one
proposed in our work (Source: online). (b) Two Wheeled Mobile
Robots (WMRs) tethered by a net as a duo. Our framework coop-
eratively plans the robot duo’s trajectories, indirectly maintaining
the net’s shape through motions. It also handles the uncertainty
of the increasing payloads using Model Reference Adaptive Control
(MRAC) to properly track the trajectories during operation.

robot as the task progresses and more objects are gathered. Of
note, this challenge is mostly overlooked in literature [4–7].

In this paper, we devise an optimization-based cooperation
framework for a pair of tethered WMRs (i.e., a duo) to
gather and transport objects with a net; see Fig. 1b for the
setup. The core of our framework is a trajectory optimization
scheme that produces smooth trajectories for the robot duo,
which jointly accounts for task goals, obstacle avoidance,
and net shape maintenance. A set of waypoints extended
from a centerline connecting all the target objects along the
robots’ initial and final configurations serve as the initialization
for the optimization scheme. An MRAC controller is further
implemented to track the produced trajectories under unknown
increasing payloads stably. Our framework is validated in both
simulation and experiment.

A. Related Work

Although cooperative planning has incubated many suc-
cessful applications, such as search and rescue [8], explo-
ration [9], object manipulation [10, 11], payload transporta-
tion [12, 13], the planning problem of tethered robot duo to
date is less explored. Prior work [4, 14] mostly formulates it
as a separation problem: The goal is to find trajectories for the
robot duo to separate all target objects from obstacles. In such
a scheme, prior methods assume an infinite separation distance
between the robots, unpractical and unrealistic in many cases.
Although Teshnizi et al. [5] relax this assumption and intro-
duce a modified A‹ planning algorithm given specific tether
lengths, it fails to properly account for the obstacle avoidance
(e.g., in final configuration) and net shape maintenance. We
fully address these challenges in a new framework.
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Gathering objects using the robot duo necessitates main-
taining the shape of the flexible tether connecting the robots,
though not necessarily precisely. Several setups have show-
cased the ability to handle flexible connections in diverse
scenarios among robots. For instance, a dual-arm robot ma-
nipulates rope-like objects in clutter [15], three quadcopters
connected by a net catch and throw a ball [11], multiple
robots manipulate deformable bed sheet [16], a visual servo-
ing scheme maintains the tether’s shape between two-wheel
robots [17, 18], and a pair of tethered quadcopters move an
object using the tether [6, 7]. Although the above literature
strongly suggests the significance of maintaining tether/net
shapes in cooperative planning, directly and precisely control-
ling its shape is oftentimes unnecessary, resulting in increased
complexity in both modeling and control. To tackle this prob-
lem, our proposed framework adopts a U-shape cost function
to maintain a proper distance between the two tethered robots,
such that the net shape is indirectly controlled.

As an essential branch of robust control, Model Reference
Adaptive Control (MRAC) can maintain the platform’s sta-
bility with unmodeled dynamics. It has been implemented on
various robot platforms with inaccurate physical parameters,
unknown payloads, or external disturbance [19]. For example,
a tilt-rotor quadcopter platform using MRAC pulls an unmod-
eled cart [20], and WMRs adopts MRAC maintain the platform
stability with inaccurate physical parameters [21]. Similarly,
we implement MRAC on the tethered robot duo for the object
gathering task, since the physical parameters of the objects
are unknown, and the drag force increases with more objects
collected by the net.

B. Overview

We organize the remainder of the paper as follows. Sec-
tion II presents the proposed cooperative path planning frame-
work for the tethered robot duo. Section III describes the
implementation of MRAC on the robot duo for robust tra-
jectory tracking. Section IV and Section V show the simula-
tion and experiment results with comprehensive evaluations,
respectively. We conclude the paper in Section VI.

II. COOPERATIVE PATH PLANNING

This section formally describes the proposed cooperative
path planning framework for the tethered robot duo, assuming
the environment and object locations are known.

A. Problem Setup

Fig. 2 illustrates our problem setup. Given an environment
with a set of objects (red squares) and obstacles (black
blocks), a robot duo is tasked to navigate from the initial
configuration Ps “ pP 1

s , P
2
s q to reach the end configuration

Pe “ pP 1
e , P

2
e q while collecting the objects on-the-way and

avoiding obstacles. The environment is described as an occu-
pancy grid Map, wherein Mappi, jq “ 0, 1, and 2 denote
empty grids, grids occupied by obstacles, and grids occupied
by objects, respectively. A safety margin γ defined based on
the robot’s dimension is further added to obstacles for collision
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Fig. 2: The proposed cooperative path planning framework for
tethered robot duo. Our framework generates a centerline C to
connect start point P c

s , end point P c
e , and all object points, together

with a set of waypoints (i.e., baseline trajectory P ), who serve as the
initialization for the subsequent trajectory optimization to find Popt.

avoidance and to the radius of each target object’s minimum
bounding circle for safety. We also merge the circles that are
closely overlapped. As a result, we have M circles in total
O “ tO1, . . . , OMu, where Oi “ rxo

i , y
o
i , r

o
i s includes the

center position and radius of each circle. Of note, avoiding
obstacles not only requires the robot duo to avoid directly
colliding with the obstacle but further demands the tethered
net not to enclose any obstacle at any moment.

We devise a two-stage cooperative path planning framework
to generate an optimal trajectory, shown also in Fig. 2. First,
our framework generates a set of waypoints (blue dots) from
the centerline path (dashed green line) that connects the robots’
start and end configurations along with the circles that enclose
target objects. We call these waypoints baseline trajectory;
they serve as a good initialization for the subsequent step.
Next, our framework performs trajectory optimization to pro-
duce feasible trajectories (solid red line).

Assumption: Our framework has two assumptions: (i)
The circles do not overlap with obstacles; namely, the objects
cannot be too close to the obstacle such that the robot duo
fails to navigate without violating the safety margin. (ii) The
size of the circles is smaller than the length of the tethered
net; the net constrains the robot duo’s motions.

B. Baseline Trajectory

Let the middle point of the tethered robot duo at the start
configuration be P c

s “ 1
2 pP 1

s ` P 2
s q and at the end configu-

ration be P c
e “ 1

2 pP 1
e ` P 2

e q. First, we adopt a conventional
path planning algorithm (hybrid A˚ [22] or RRT˚ [23]) to
construct the centerline by connecting P c

s , each circle’s center
point Oi, and P c

e ; see dashed green line in Fig. 2. Formally,
the centerline is denoted as C “ tP c

s , . . . , P
c
e u P RNˆ3,
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Fig. 3: The selection of baseline points. Given the centerline point
P c
i (green arrow), four candidates of baseline points are proposed;

Eqs. (2) and (3) yield P1, P2 (blue dots), and Eq. (1) yields P3, P4

(red dots). Shaded points indicate the selected baseline points P l
i , P

r
i .

P c
i “ rxc

i , y
c
i , ϕ

c
i s, where N is the total number of points.

Next, we expand this centerline to form robot duo’s baseline
trajectories, P “ rP l, P rs P RNˆ6; see blue curves in Fig. 2.

Specifically, we divide C into two groups: on or near the
circumference of circles Ccircle and others Cfree. For point P c

i P

Cfree, the baseline trajectory points are given by

P l
i , P

r
i “

»

–

xc
i ˘ l cospϕc

i ` π
2

q

yc
i ˘ l sinpϕc

i ` π
2

q

ϕc
i

fi

fl

T

, (1)

where l is the separation distance chosen based on the dimen-
sion of the WMRs. For point P c

i P Ccircle, we first calculate
the line in the direction perpendicular to its orientation ϕc

i with

y “ kx ` b, (2)

where k “ tanpϕc
i ` π

2 q, and b “ yci ´ kxc
i . Next, we solve

two intersection points, P1 and P2, by combining Eq. (2) with
the related circle equation of Oj ,

px ´ xo
j q

2
` py ´ yo

j q
2

“ roj
2. (3)

Another two points obtained by Eq. (1) are denoted as P3 and
P4. We choose P l

i , P
r
i from these four candidates by selecting

the two outer ones, as shown in Fig. 3.

C. Trajectory Optimization

With the estimated baseline trajectory in Section II-B as
the initialization, we further devise an iterative optimization
framework to find the optimal trajectory for the tethered duo.
Compared with optimizing the whole trajectory at once, our
iterative optimization framework improves computational effi-
ciency and avoids local minimum [24, 25]. At each iteration,
the trajectory of one mobile robot, denoted as P 1, is optimized,
whereas the trajectory of the other robot, denoted as P 2, is
treated as a known constant. Algorithm 1 summarizes this
framework, where opt stands for the nonlinear optimization
solver with defined cost functions and constraints.

1) Cost Functions:
Obstacle Cost: We define obstacle cost in two forms: the

cost of physical obstacles and the cost of objects as obstacles.
The cost of physical obstacles is defined as

Jobs,1piq “

#

K1, MappP 1pi, 1q, P 1pi, 2qq ě 1

0, Else
, (4)

where K1 is a positive parameter to be selected.

The cost of objects as obstacles treats circles Oj as obsta-
cles, designed similarly to potential field methods [26]:

Jobs,2pi, jq “

$

&

%

1

2
K2p

1

Dpi, jq
´

1

roj
q2, Dpi, jqďroj

0, Dpi, jq ą roj

, (5)

where Dpi, jq denotes the Euclidean distance between the
trajectory point P 1

i and the object circle center Oj , and K2 is
a positive parameter to penalize the distance.

As such, the combined obstacle cost of P 1
i is defined as

Jobspiq “ Jobs,1piq `

M
ÿ

j“1

Jobs,2pi, jq. (6)

Distance Cost: The distance cost is calculated as the
weighted sum of the Euclidean distance between two consec-
utive points and the orientation difference:

Jdistpiq “ t1

b

∆x2
i ` ∆y2i ` t2|∆ϕi|,

∆xi “ P 1pi, 1q ´ P 1pi ` 1, 1q,

∆yi “ P 1pi, 2q ´ P 1pi ` 1, 2q,

∆ϕi “ P 1pi, 3q ´ P 1pi ` 1, 3q,

(7)

where t1 and t2 are two non-negative parameters.
Expansion Cost: The cost function for expansion is

designed as a U-shape cost function [27]:

Jepiq “

$

’

&

’

%

kd1 tan
2pγ1d ` γ2q, dmin ď d ď drest

kd2pd ´ drestq
2 ´

pd´drestq
2

pd´dmaxq2
, drest ă d ď dmax

K3, d ă dmin or d ą dmax

(8)

where γ1 “ π
2pdrest´dminq

, and γ2 “ ´γ1drest. d is the Euclidean
distance between trajectory points P 1

i and P 2
i , representing

the expansion of the tethered net. kd1, kd2, and K3 are
gain parameters. dmax, dmin, and drest denote the minimum,
maximum, and the ideal expansion of the tethered net, set
based on various hardware setup and task scenarios.

The reason for having this expansion cost is to maintain the
U-shape of the tethered net. Conversely, the net shape would
make it infeasible to collect objects when the two WMRs are
too close or too far. In this paper, we set dmin “ 0.1dmax and
drest “ 2

πdmax—a half-circle shape. Of note, if dmax is not
specified, we can treat it as a random variable to estimate the
optimal net length in certain task scenarios.

Smoothness Cost: The smoothness cost is defined as the
sum of squared accelerations along the trajectory:

Js “

3
ÿ

j“1

bjP
1p:, jqTQP 1p:, jq, (9)

where Q “ ATA, and A is the finite difference matrix [28],
bjs are weighting gains.

Taken together, the total cost along the whole trajectory is
defined by the sum of the above cost functions:

Jtotal “ a1Js `

N
ÿ

i“1

a2Jdistpiq ` a3Jobspiq ` a4Jepiq (10)

where a1, a2, a3, and a4 are weighting gains for costs.
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Algorithm 1: Trajectory Optimization Algorithm
Data: Ntotal, P,O,Map, t1´2,K1´3, kd1, kd2

Q, b1´3, a1´4,∆Lmax,∆ϕmax
Result: Popt, dmax
step Ð 1, dmax Ð N∆Lmax; // Initialization
while step ď Ntotal do

if modpstep, 2q “ 1 then // Optimize left half
Ps Ð P p1, 1 : 3q, Pe Ð P pN, 1 : 3q;
// Specify start and end points
P 1
ini Ð P p2 : N -1, 1 : 3q;

// Traj to be optimized
P 2
ini Ð P p2 : N -1, 4 : 6q;

// Traj of another half as constant
rP 1

opt, dmaxs Ð optpP 1
ini, P

2
ini, Ps, Pe,Map,O, dmaxq;

// Optimization process
P p2 : N -1, 1 : 3q Ð P 1

opt;
// Update left half trajectory

else // Optimize right half
Ps Ð P p1, 4 : 6q, Pe Ð P pN, 4 : 6q ;
P 1
ini Ð P p2 : N -1, 4 : 6q;

P 2
ini Ð P p2 : N -1, 1 : 3q;

rP 2
opt, dmaxs Ð optpP 1

ini, P
2
ini, Ps, Pe,Map,O, dmaxq;

P p2 : N -1, 4 : 6q Ð P 2
opt;

end
step Ð step ` 1; // Update steps

end
Popt Ð P ; // Output optimized trajectory

2) Constraints:
Maximum Velocity Constraint: We define it as:

0 ď

b

∆x2
i ` ∆y2

i ď ∆Lmax,

´∆ϕmax ď ∆ϕi ď ∆ϕmax,
(11)

where ∆Lmax is the maximum travel distance at each step, and
∆ϕmax is the maximum turn angle at each step.

Object and Obstacle Constraint: We select consecutive
points on trajectory P 1 and P 2 (i.e., P 1

i , P
1
i`1, P

2
i , P

2
i`1) to

build a quadrilateral, resulting in N ´ 1 quadrilaterals. To
ensure collecting all the objects, the centers of all circles
O must be covered by these quadrilaterals. Moreover, to
prevent the path from enclosing any obstacles inside, these
quadrilaterals must not overlap with any obstacles.

III. ROBUST TRAJECTORY TRACKING CONTROL

We adopt a decentralized framework to design the trajectory
tracking controller for individual WMRs. Since the drag force
from the tethered net and gathered objects are unknown in
our proposed setup, the conventional model-based controller
is not suitable, and a more advanced MRAC is implemented
to improve the robustness of the trajectory tracking control.

A. Dynamics of Individual WMRs

The configuration of WMRs is defined by q “ rx, y, ϕs,
shown also in Fig. 2. Li et al. [29] describe its dynamics:

Mpqq:q ` Cpq, 9qq 9q “ Bpqqτ ´ Apqq
Tλ, (12)

where

Mpqq “

»

–

m 0 md sinϕ
0 m ´md cosϕ

md sinϕ ´md cosϕ J

fi

fl , (13)

Cpq, 9qq “

»

–

0 0 md 9ϕ cosϕ

0 0 ´md 9ϕ sinϕ
0 0 0

fi

fl , (14)

Bpqq “
1

r

»

–

cosϕ cosϕ
sinϕ sinϕ
R ´R

fi

fl , (15)

Apqq “
“

´ sinϕ cosϕ ´d
‰

, (16)

λ “ ´mp 9x cosϕ ` 9y sinϕq 9ϕ, (17)

where m is the WMR’s mass, J its rotational inertia, 2R the
distance between two driving wheels, r the radius of each
wheel, d the distance from the coordinate origin P0 to the
CoM Pc, Mpqq the inertia matrix, Cpq, 9qq the Coriolis and
Centrifugal force matrix, Bpqq the input transformation matrix,
τ the torque vector for two wheels, Apqq matrix associated
with the non-holonomic constraints (i.e., Apqq 9q “ 0), and λ
the vector of constraint forces. Selecting Spqq as a basis of
Apqq nullspace (i.e., SpqqTApqqT “ 0),

Spqq “

»

–

cosϕ ´d sinϕ
sinϕ d cosϕ
0 1

fi

fl , (18)

we can rewrite the WMR’s kinematic equation with the
velocity vector,

9q “ Spqqv, (19)

where v “ rν, ωsT , and ν and ω are the WMRs’ linear and
angular velocity. Taking the derivative of Eq. (19), we have

:q “ 9Spqqv ` Spqq 9v. (20)

Substituting Eqs. (19) and (20) into Eq. (12) and multiplying
ST at each side, we have

M̄ 9v ` C̄v “ τ̄ , (21)

where M̄ “ SpqqTMpqqSpqq, τ̄ “ B̄τ , B̄ “ SpqqTBpqq, and
C̄ “ SpqqMpqq 9Spqq ` SpqqTCpq, 9qqSpqq.

B. Model-Based Control of Individual WMRs

We design a conventional model-based controller based on
Eq. (21) as a baseline,

τ “ B̄:
pM̄ 9vd ` C̄vdq, (22)

where vd is the desired velocity vector, designed to track the
reference trajectory [29]:

vd “

„

νd

ωd

ȷ

“

„

νrcoseϕ ` k1pex ` dp1 ´ coseϕqq

ωr ` k2ν
rpey ´ dsineϕ ` k3ν

rsineϕq

ȷ

, (23)

where νr and ωr are reference linear and angular velocity,
k1, k2, and k3 are positive parameters, and ex, ey , and eϕ are
errors between the reference trajectory and the real trajectory
in x, y, and ϕ, respectively [29],

ex “ xr
´ x, ey “ yr

´ y, eϕ “ ϕr
´ ϕ. (24)

Although this controller has proven to work well on WMRs
given accurate physical parameters, it fails in our setting
because the tethered net will collect multiple objects with
unknown physic parameters (mass, inertia, etc.). As such, we
further design an adaptive control law; see the next section.
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C. Adaptive Control with Unknown Payload

Since MRAC laws guarantee the asymptotic convergence
of trajectory tracking error in the presence of parametric and
matched uncertainties [19], we implement MRAC on WMRs
to improve its robustness under unknown payload.

Specifically, we rewrite the matrices in Eq. (21) with
unknown dynamics,

M̄ “ M̄k ` M̄˚
u “ pM̄k ´ Iq ` pI ` M̄˚

u q

“ pM̄k ´ Iq ` M̄u,

C̄ “ C̄k ` C̄u,

(25)

where k and u denote the known and unknown dynamics,
respectively. Combining Eq. (25) with Eq. (21), we have

9Xptq “ ArXptq ` Bruptq, (26)

where X “ v, Ar “ ´M̄´1
u C̄u, and Br “ M̄´1

u . The input τ̄
can be recovered by

τ̄ “ u ` pM̄k ´ Iq 9vptq ` C̄kvptq, (27)

and the reference model is given as

9Xmptq “ AmXmptq ` Bmumptq, (28)

where Xm “ vd, Am “ ´K, K is a Hurwitz matrix, and
Bm “ I . The reference input um can be calculated by

um “ B´1
m p 9Xm ´ AmXmq “ 9vd ` Kvd. (29)

The adaptive law is designed as

u “ ūa ` ūk,

ūk “ ´KX ` um,

ūa “ ´∆XX ` ∆mum,

(30)

where ūk and ūa are the linear and adaptive feedback compo-
nent, respectively. 9∆X and 9∆m can be calculated with adaptive
gains and state errors; please refer to Canigur et al. [21]
for more details. Of note, the motor torque saturation and
the adaptive gains of MRAC jointly determine the maximum
payload while the stability of tracking controller is still main-
tained. Larger adaptive gains can increase the response speed
but may lead to oscillations and higher overshoot [30].

IV. SIMULATION

This section evaluates our cooperative planning framework
in a simulation environment based on Gazebo, a 3D dynamic
environment simulator. Our results demonstrate that (i) the
proposed framework produces optimal trajectories for the
tethered robots, and (ii) our U-shape cost function design
effectively maintains the tethered net during the tasks.

A. Setup

For the tethered robot platform, we utilize two TurtleBot3
Waffle Pi robots and tether them with a flexible “net” by con-
necting several 0.1-meter-long thin cuboid links with passive
revolute joints; the length of the net can be easily modified
by inserting or removing cuboid links. With such a design,
the tethered net would deform in accord to gathered objects’

Fig. 4: The simulation environment. The tethered robot duo is
tasked to gather 13 objects (red cubes), navigating from the bottom
left to the bottom right. The dashed boxes depict some key moments
when the duo gathers objects with the flexible net.

weights, and drag forces could be introduced to robots in
an unspecified direction, crucial in evaluating our MRAC
implementation. To enable torque command to the robots in
simulation, we use JointEffortController in ros control to set
desired torques to TurtleBot3’s wheels instead of using the
built-in controller with velocity control only.

Fig. 4 illustrates the simulated environment with several
keyframes of a task performance. The tethered robot duo
starts from the bottom left to gather red movable cubes
while avoiding blue obstacles at various locations. Table I
tabulates some essential physical and software properties of
the simulation setup. We set the parameters involved in the
trajectory planning as following: l “ 0.3 m, Ntotal “ 8,
t1 “ 300, t2 “ 10, K1 “ K2 “ K3 “ 1e7, kd1 “ 20,
kd2 “ 15, b1 “ b2 “ 110, b3 “ 1, a1 “ a2 “ a3 “ a4 “ 1,
∆Lmax “ 0.05 m, and ∆ϕmax “ 0.1 rad. We utilize the
nonlinear optimization solver fmincon in Matlab to solve the
optimal trajectory with the interior point method.

B. Trajectory Tracking

Fig. 5 shows the simulation results with various lengths
of the tethered net dmax. Given a configuration during the

TABLE I: Physical and Software Properties used in Simulation

Group Parameter Value

R
ob

ot

Mass m 1.43 kg
Moment J 0.146 kg ¨ m2

R 0.144 m
r 0.033 m
d 0.020 m

N
et

Mass of each cuboid link 2 g
Size of each cuboid link d ˆ w ˆ h 1 ˆ 10 ˆ 8 cm3

Damping of each cuboid joint 1e ´ 3
Friction of each cuboid joint µ1 “ µ2 “ 0.2

O
th

er
s

Mass of object cube mi 25 g
Size of object cube 5 ˆ 5 ˆ 5 cm3

Trajectory tracking controller rate 100 Hz
Motor torque controller rate 500 Hz
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(e) Trajectory tracking dmax “ 3.0 m (f) Simulation cost and planing cost
Fig. 5: (a–e) The schematic of the simulated environment constructed in Gazebo. With various lengths of the tethered net, our cooperative
planning framework produces reference trajectory (dashed red lines). Tracked trajectories by the proposed MRAC controller and conventional
model-based controller are visualized in solid red and blue lines, respectively; the MRAC controller can robustly track trajectories, whereas
the conventional controller constantly fails as the task progresses. (f) Distance cost and total cost of the optimized trajectories in the
planning and the simulated execution phases. Our framework further produces the optimal dmax “ 2.32 m for a given configuration.

optimization, our framework can further estimate the optimal
length of the tethered net in terms of defined cost function
Jtotal by treating dmax as a variable in Algorithm 1. If dmax
is already specified, Algorithm 1 can be easily modified by
treating dmax as a constant instead of a variable. Among five
cases with various maximum net lengths shown in Fig. 5, our
framework estimates dmax “ 2.32 m is the optimal net length.

In these simulations, we implement both MRAC controller
and the conventional model-based controller. Specifically, the
MRAC controller can maintain the platform stability along the
whole trajectory while successfully gathering and transporting
all the objects to the endpoint. By contrast, the conventional
model-based controller is unstable when more objects are
collected, resulting in collisions between the two robots or
between the robot and objects/obstacles.

For each of the above cases, the distance cost Jdist and
total cost Jtotal are first obtained with recorded robot trajectory.
Next, these costs are compared with planned costs; the results
are shown in Fig. 5f. In particular, if we only care about Jdist,
both dmax “ 2.5 m and dmax “ 3.0 m are better. However,
it is difficult to maintain the shape of the tethered net under
these two settings. As such, our optimization framework deems
they are not the optimal solution. In comparison, although
dmax “ 2.32 m results in a slightly higher Jdist, this length is
considered as the optimal one due to the lowest Jtotal.

This simulation result demonstrates the tracking perfor-
mance of the proposed MRAC controller to handle increas-
ing payloads. It also suggests that a longer tether between
robots does not necessarily correspond to better efficiency.

This finding may impact prior arts wherein the length is not
considered [4, 14] or is fixed [5, 6, 17, 18, 31].

C. Maintaining Net Shape

We design a U-shape cost function in Eq. (8) to penalize the
tethered robot duo for being too close/far, so that the curvature
of the net is indirectly controlled to embrace new objects and
carry gathered objects. To demonstrate the efficacy of the U-
shape design, we compare with two baseline cost functions:
‚ No separation constraint included. This strategy does not

take separation distance into consideration [4]; referred to
as Baseline 1 in Fig. 6.

‚ Desired separation distance drest as hard constraint. This
strategy maintains the desired separation distance along the
path [6, 17, 18, 31]; referred to as Baseline 2 in Fig. 6.
Figs. 6b, 6d and 6f quantitatively compare the distance

cost of each cost design with various net lengths in three
scenarios, and Figs. 6a, 6c and 6e show the corresponding
reference trajectories produced by our framework using the
3 types of expansion cost designs with a specific net length
in each scenario. Although Baseline 1 yields the shortest
travel distance without including any constraint on separation
distance, it may require unrealistic net length. Baseline 2 keeps
a specified separation distance at all time, which may find no
solution for a small dmax or cause unnecessarily long travel
distance for a large dmax. In comparison, the proposed U-shape
cost function produces feasible solutions for various dmax while
properly maintaining efficient travel distances.
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Fig. 6: Planned trajectories with various expansion cost function
designs in three scenarios; each row corresponds to one scenario.

V. EXPERIMENT

Section IV has evaluated the proposed cooperative planning
framework and the MRAC controller design in simulation.
This section further validates the proposed framework in the
physical environment.

A. Setup

The setup of our proposed tethered robot duo is shown in
Fig. 1b, wherein a net is connected to two TurtleBot3 Waffle
Pi robots at each end. Each TurtleBot is equipped with a
Raspberry Pi 3B+ running Robot Operating System (ROS), an
OpenCR 1.0 board with an IMU module and a microprocessor
for low-level motor control, an LDS-01 Lidar for localization,
and two Dynamixel XM430 motors with a maximum torque of
3 N ¨m for wheel actuation. The path planning component runs
on a desktop (AMD Ryzen9 5950X CPU, 64.00 GB RAM) and
takes an average of 180.3 s to produce the optimal trajectory
with N “ 200 in Algorithm 1.

To enable torque command, we modify the built-in low-level
controller on OpenCR board designed to take velocity com-
mand inputs, such that it receives torque command inputs. The
Gmapping Simultaneous Localization and Mapping (SLAM)
algorithm is utilized to localize the WMRs in experiment and
outputs q and v as feedback. Fig. 7a shows the experimental
environment, a replication of the simulated environment pre-
sented in Fig. 6a; eight objects are placed on the floor with
various weights ranging from 15 g to 50 g.

(a) Experimental environment. Eight objects are placed on the floor.
The robot duo is tasked to gather them with a tethered net while
avoiding obstacles during its navigation.

(b) Five keyframes of gathering objects captured with varying weights
during the robot duo’s task execution.
Fig. 7: Experiments with MRAC implementation in a robot duo in
the physical environment.

Fig. 8: Reference and tracked trajectories of the tethered robot
duo. The red shadows indicate the variations of five executions.

B. Results

The net length used in our experiment is 1.45m, the optimal
length estimated by our cooperative path planner according
to this specific environment configuration. Fig. 8 plots the
reference and actual trajectories with error ribbon aggregated
from five trials. Together with the simulation results, our
experiments have demonstrated (i) the implemented MRAC
controller robustly tracks the planned trajectories, and (ii) the
tethered robot duo, using the proposed cooperative planning
framework, successfully gathers all the objects along the path
and carries them to the end position.
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VI. CONCLUSION

This paper investigated an interesting task of gathering and
transporting scattered objects with a tethered robot duo. We
addressed it by proposing a two-stage cooperative planning
framework based on trajectory optimization and implementing
it with MRAC. In planning, we designed a U-shape cost func-
tion and incorporated other constraints to produce trajectories,
capable of indirectly maintaining the flexible net’s shape w.r.t.
the distance between two robots. In the implementation, we
demonstrated that MRAC could robustly handle the increased
payload with unknown dynamics as more objects were carried.
As an extra feature, our planning framework can also estimate
the most efficient length given an environment configuration,
which led to a crucial extension to existing work in teth-
ered robots that assumed an infinite or fixed tether length.
Both the simulation and experiment results have demonstrated
the efficacy of the proposed framework and the necessity
of MRAC implementation. In future work, we plan to (i)
extend this framework to tethered Unmanned Surface Vehicle
(USV) and drones for collaborative tasks, (ii) incorporate a
perception module when the environment configuration is not
fully available, and (iii) enable effective re-planning for the
robot duo to account for new observations.
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