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ABSTRACT
We propose VRGym, a virtual reality (VR) testbed for realistic
human-robot interaction. Different from existing toolkits and VR
environments, the VRGym emphasizes on building and training both
physical and interactive agents for robotics, machine learning, and
cognitive science. VRGym leverages mechanisms that can generate
diverse 3D scenes with high realism through physics-based simu-
lation. We demonstrate that VRGym is able to (i) collect human
interactions and fine manipulations, (ii) accommodate various robots
with a ROS bridge, (iii) support experiments for human-robot in-
teraction, and (iv) provide toolkits for training the state-of-the-art
machine learning algorithms. We hope VRGym can help to advance
general-purpose robotics and machine learning agents, as well as
assisting human studies in the field of cognitive science.1
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1 INTRODUCTION
The past decade has witnessed a rapid development of categorical
classification for objects, scenes, and actions, fueled by large datasets
and benchmarks, discriminative features, and machine learning meth-
ods. Similarly, successes have also been achieved in many other
domain-specific tasks, largely due to the ever-growing vast amount
of labeled data and rapidly increasing computing power, combined
with supervised learning methods (in particular, deep learning [9]).

1The code has been made publicly available at GitLab.
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Figure 1: (a) VRGym integrates three types of input devices, providing
human manipulation in an increasing resolution using Oculus Touch,
LeapMotion, and a data glove, from top to bottom. (b) The VRGym-
ROS bridge allows physical human/robot agent meet virtual agents in-
side a virtual world, providing the capability of social interactions. (c)
The training of the robot navigation using reinforcement learning (RL)
inside VRGym. The robot successfully navigates to the goal without col-
lisions after about 10,000 episodes. (d) The learning of object manipula-
tion using human demonstrations (leftmost) and inverse reinforcement
learning (IRL) (right three) inside VRGym.

The performance of certain tasks has reached a remarkable level,
even arguably better than human in control [7, 18], grasp [13, 16],
object recognition [8], learning from demonstration (LfD) [1], and
playing the game of go [26] and poker [3, 19].

Despite the impressive progress, these data-driven feed-forward
classification methods have well-known limitations, hindering the
advancement towards a more general artificial intelligence (AI) that
can interact with human: (i) needing large labeled training datasets;
(ii) often task-specific and view-dependent, which makes it difficult
to generalize; (iii) lacking an explicit representation and structure to
handle large variations exhibited in and outside of the training data.

In contrast, the hallmark of machine intelligence is the capability
to rapidly adapt to new tasks and “achieve goals in a wide range
of environments [12]”. To achieve such intelligence, recent years
have seen the increasing use of synthetic data and simulation plat-
forms2. Advantages include: (i) the structure of the data is efficiently
encoded without the need for human labeling as the simulation inher-
ently comes with the ground truth; (ii) can accommodate different
embodied agents (e.g., humans, humanoid robots, or turtle-bots);
and (iii) benchmark generalization in various tasks at a low cost.

Empowered by the gaming industries, tremendous amount of
game contents, including scenes and objects, are made available for
the virtual environment. Meanwhile, more sophisticated physics-
based simulation engines and rendering techniques have enabled
more realistic simulations. These characteristics allow a growing
number of tasks to be performed using synthetic data in simulation
platforms. Furthermore, some simulation platforms also become
publicly available, such as AirSim [24], AI2THOR [11], Gibson [31],
etc., promoting the further explorations and applications. In short, it

2See a brief review in the supplementary.
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Figure 2: System architecture of VRGym, consist of three major com-
ponents: (i) Hardware modules for human data input. (ii) Scene mod-
ules batch import various category of scenes as well as diverse objects,
derived from different resources such as 3D modeling tools, scanned
models, and automatically generated synthetic data. (iii) VR environ-
ment serves as an ideal testbed, where both a human and a robot can
perform diverse tasks. The inherent physics-simulation engine enables
realistic human-scene interactions and robot-scene interactions.

is both the research and the engineering efforts that make it possible
to achieve considerable successes in some AI tasks and applications.

However, prior work often lacks the human involvement, espe-
cially in high-level tasks. For instance, although some virtual plat-
forms (e.g., OpenAI Gym [2] and Mujoco [28]) allow to train a
virtual robot to perform many manipulation tasks, they lack a human
in-the-loop, thus cannot handle critical tasks like intention predic-
tion and social interaction. Hence, having a simulation environment
where a robot can interact realistically with a human and evolve
incrementally could facilitate the robotics developments.

In this paper, we propose VRGym—a virtual reality testbed,
which combines VR with virtual training for both physical and
interactive AI agents. By putting human in-the-loop, VRGym goes
beyond the traditional synthetic data and simulation platforms by
simulating a human-robot co-existing environment.

Specifically, VRGym tries to fill in the gap between the new
advancement of VR and the need for training virtual agents to col-
laborate with human. In particular, we hope to address three critical
issues. First, what is the best way to reflect human embodiment in
VR; i.e., how humans can genuinely interact with robots and how the
robots can perceive related data that are sufficiently close to those in
real life? Second, how to take advantages of current well-developed
algorithms and models? Third, to which level of unique interactions
the VR simulations can afford? To answer these questions, VRGym
is designed to push the limits of current akin simulators by offering
the following characteristics.

Fine-grained human embodiment representation Adding a
real human in the simulation is not a trivial task. Most of the current
simulation platforms only support either scripted or limited remote-
controlled human models. In VRGym, we integrate a multi-sensor
setup as alternatives to traditional VR input devices. Our setup is
capable of providing a whole-body sensing and reflecting the mea-
sured data on a detailed human avatar. As a result, the simulation can
account for both body and hand poses during interactions. Figure 1a
shows different resolutions of manipulations in VRGym.

High compatibility with existing robotics systems and algo-
rithms In VRGym, we build an efficient bi-directional communi-
cation interface with the Robot Operating System (ROS). Figure 1b

depicts an example of how a person interacts with a robot in VR-
Gym, supported by the VRGym-ROS bridge. As a result, all ROS-
compatible resources can be used in VRGym with little effort, which
allows easy setups, training, evaluations, and benchmark.

Multiple levels of interactions By providing the fine-grained
human embodiment representation and the ROS integration, various
interactions between humans and autonomous agents are made possi-
ble in different resolutions. VRGym supports interactions as simple
as only providing visual/perception information and as sophisticated
as learning complex robot grasping from human demonstrations.
Figure 1c shows how an agent obtains a navigation policy using RL,
and Figure 1d shows learning a grasp policy using IRL.

VRGym makes the three contributions:
• A comprehensive simulation platform that integrates UE4 built-in

functions, e.g., scene, physics-based simulation, rendering, basic
human inputs, with customized developments, aiming to facilitate
a variety of AI researches.

• A multi-sensor hardware and software setup that allows the whole
body sensing and reflects human subjects to virtual embodiments
with great details. The generated data can be seamlessly logged
for online and offline training purposes.

• VRGym-ROS bridge enables a bi-directional data communication.
Through this interface, AI researchers can take advantages of the
existing robotics models and algorithms. Similarly, robotics re-
searchers can utilize more sophisticated physics-based simulation.

2 VRGYM SYSTEM ARCHITECTURE
Figure 2 illustrates the system architecture of the VRGym. VRGym
offers a variety of realistic scenes and tasks for both humans and
robots, and provide automatic logging of the data during agents
performing tasks. This capability is provided by the integration of
three main modules: (i) scene module which renders user-specified
3D scenes and objects, (ii) VR environment based on UE4 with
physics-simulation engine, introducing various physical properties
that enrich tasks and data, and (iii) VR hardware module that imports
a human agent’s state and command to the VRGym. We now further
elaborate each module in the following subsections.

2.1 Scene Module
Scenes and objects are the building blocks for a simulation environ-
ment. In order to increase the variety of environments for VRGym,
we develop several pipelines to import or create scenes into VRGym
based on the users’ specifications. The scene module enriches static
environments for VRGym. Note that the ground truth of RGB image,
depth image, surface normal, and object label come automatically
with the scene module in real-time, enabling the training for machine
learning models and robotics applications.

Specifically, VRGym can directly import the entire 3D scenes
provided in large open-source datasets, either collected from the
web [5, 27] or automatically generated from a given set of ob-
jects [10, 22, 32] (see top of Figure 2). Additionally, VRGym also
supports manually constructed scenes (see Figure 4) for more spe-
cific tasks, where neither the open-source scene dataset or the auto-
matically generated scenes could satisfy such constraints.

Similarly, individual objects can be imported to VRGym from
mesh files, which can be obtained from open-source CAD datasets
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Figure 3: Examples of various physics-based simulation for diverse
tasks in VRGym beyond merely rigid-body simulation in other 3D vir-
tual environments. (Top) Pouring water. (Bottom) Folding clothes.

(e.g., [4, 6]). Customized or complex objects can be manually created
or scanned using a RGB-D sensor to import to VRGym for specific
tasks. After the import, users can further adjust static meshes, tex-
tures, materials, and collision boundaries of the objects.

2.2 Real-time Physics-based Simulation
We choose UE4 as the simulation engine for VRGym for its ad-
vanced real-time physics-based simulation. Unlike previous 3D vir-
tual environments that mostly focus on rigid body simulation or
symbolic-level event simulation, VRGym integrates the advanced
simulation provided by UE4 to enable a large set of various simula-
tions, including rigid body, soft body, collision, fluid, cloth, slicing,
and fracture. Some examples are shown in Figure 3 and the center of
Figure 2. As a result, subtle object state or fluent [20] changes due
to the virtual agent’s actions are realistic and diversify. Integrating
with such sophisticated physics-based simulations, VRGym not only
increases the task complexity and improves the visual experience of
human agents, but also affords more complicated task simulations
for both virtual and physical robots.

2.3 Human Embodiment in VRGym
Compared to other similar 3D virtual environments, VRGym has
another distinct feature; i.e., introducing the capability to represent
the physical human agent’s embodiment in real-time as an avatar in
the virtual environment. To reflect human movements and manipu-
lations accurately, the physical human agent is tracked in real-time,
resulting in a humanoid mesh that can deform accordingly based on
the underlying tracked body skeleton and the hand poses.

Specifically, the setup includes: (i) A Kinect One RGB-D sen-
sor to map human skeleton to the avatar in real-time through a
customized-built Kinect plugin developed in UE4, (ii) an Oculus
headset to record the head pose, (iii) a dance pad to navigate the
avatar inside a large virtual world, and (iv) three types of input de-
vices that provide manipulation information in different resolutions.
Compared to other platforms, VRGym emphasizes the capability for
users to interact with virtual environments. Depending on the needs,
the user can use one of the three input devices for manipulation:

• Oculus Touch Controller offers an attachment-based approach;
i.e., the virtual object will automatically attach to the virtual con-
troller/hand once the user triggers the grasp event. It enables a
firm-grip manipulation, providing a firm but the least realistic
grasp during the human-object interaction. Such manipulation is
effective in the event-level tasks where the fine-grained hand pose
is not required; e.g., pick and place.

• The commercial hand pose sensing products (e.g., LeapMotion)
provide the vision-based gesture recognition. It is a low-cost and

Figure 4: A human agent performs a series of actions in a virtual scene
using Oculus Touch controllers. (Left) Action sequence from a top view
of a virtual indoor environment. (Right) Sequences of the performed ac-
tions. Specifically, the human agent starts at the red dot as shown in the
left, (1) pushes a door, (2) navigates along the hall, (3) twists a door to en-
ter the kitchen, and (4)-(7) makes a cup of coffee. This process involves
(i) large movements using the human embodiment provided in VRGym
(navigating along the hallway), (ii) complex operations (operating the
coffee maker), (iii) fine-grained manipulations (twisting the doorknob),
and (iv) physics-rich controls (pouring milk).

off-the-shelf solution that can be easily set up by mounting the
sensor on the head-mounted display. However, it is difficult to
have a firm grasp due to occlusions and sensor noises. Note that
the hand tracking will fail if the hand is not within the view.

• An open-sourced glove-based device [15] is also compatible with
VRGym to provide the finest-grained manipulation. It requires
a Vive Tracker to provide global positioning of the hand, and an
IMU network in the glove to measure the rotation of each phalanx
and calculate the hand poses using forward kinematics. Although
glove-based devices are costly compared to other alternatives, they
allow reliable hand pose sensing, which is vital for the tasks with
detailed, complex and subtle hand manipulations.

3 SOFTWARE INTERFACE DESIGN
VRGym has two major software interfaces developed to enable
training and benchmarking both physical and interactive AI agents.
The first interface is the human data logging system that builds
on top of the hardware setups to collect the data generated during
the interactions between the avatar and the environment. Another
interface, a VRGym-ROS bridge, is introduced to allow seamlessly
import of robot models and robotics algorithms from ROS. The
collected data together with the VRGym-ROS bridge could be used
for a variety of AI applications; see examples in Section 4.

To demonstrate the functions of these two interfaces, we consider
a task-rich environment built for the VRGym. Figure 4 depicts an
environment in VRGym that provides semantically-diverse tasks to
the agent. Note that although such environment could be constructed
in the real world to perform the demonstrated tasks, sensing and
logging the detailed data generated during the interactions between
the agent and objects would be extremely difficult in practice.

In such a typical virtual environment in VRGym, an agent (a
human as an avatar or a virtual robot) is initially placed on the
starting point, indicated as the red dot in Figure 4. The final goal
for the agent is to reach the kitchen located at the far-end, and
accomplish several sub-tasks. At the beginning, the agent has to push
to open the first door and navigate along the corridor, requiring large
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Figure 5: (a) Grasp a mug, a tennis racket, and a bowl. The red area
indicates the contact force between the virtual hands and the object. (b)
Visualization of the collected human grasp data. Top: a set of 3D objects.
Bottom: the average grasp heat map generated by multiple subjects. (c)
Visualization of footprint from different subjects.

movements. Then the agent must go through another door to enter
into the kitchen, and the only solution is to twist the doorknob using
complex manipulations. Inside the kitchen, the agent is required to
make a cup of coffee with milk, which needs to grasp and move a
mug, operate the coffee maker by pushing several buttons in a certain
order. The entire procedure requires the task planning empowered
by the physics-based simulation.

3.1 Human Data Logging
When a user performs a task, data generated by the interactions
between an avatar and the environment can be directly logged with
ground-truth labels in VRGym. In this section, we showcase two
scenarios where the data is logged and used in other applications.

Grasping Finer-grained manipulation is made feasible in VR-
Gym using a glove-based device [15]; see Figure 5a for some results.
By collecting a set of subjects’ grasp data on a variety of objects, we
can merge all the collected grasp data to form heat maps on different
objects to visualize the likelihood of grasp points on man-made ob-
jects. Specifically, the grasp data shown in Figure 5b is the averaging
data of heat maps collected from 10 human subjects, where the hotter
the area is, the denser the grasp points are, and the more likely a
human agent would grasp around that area.

Footprints VRGym provides the function to log an agent’s foot-
prints or the odometry data. Figure 5c shows the recorded odometry
data from 5 human subjects who have limited VR experience. Each
of the participants navigates from the starting point to the kitchen
room along the corridor using Oculus Touch controllers.

3.2 ROS Interface
The VRGym is compatible with the popular ROS framework through
a customized VRGym-ROS communication bridge. This bridge
allows the off-the-shelf ROS robot models to communicate with the
simulations and human agents in VRGym with minimal efforts; e.g.,
the diverse scenes rendered in VRGym can also be exported to the
Gazebo simulator, which is highly compatible with ROS.

Implementation We develop a ROS interface, VRGym-ROS
bridge, based on the TCP/IP protocol in order to enable VRGym to
communicate with the existing popular robotics platforms. Through

(a) (b)

Figure 6: VRGym-ROS bridge. (a) The robot navigation in the scene
imported into the Gazebo, exported from the VRGym. The red curve in-
dicates the path planned by the robot’s global planner. The black curve
is the actual trajectory executed by the robot. (b) A Husky-UR5 robot
is imported into VRGym from ROS to guide the way and open the door
for a human agent.

this interface, robot body parts can be easily imported to VR envi-
ronments as mesh files and control signals, and a data stream can be
seamlessly transferred between the VRGym and the robot platforms
using ROS to communicate with either physical or virtual robots. We
organize all data types (i.e., ROS topics) in a unified JSON format
and construct JSON parsers in both VRGym and ROS to further im-
prove the compatibility. Each port in the protocol supports a stream
of data, making it possible to present multiple agents from ROS into
the VRGym. With the VRGym-ROS bridge, we present two exam-
ples of training and evaluating human robot interactions (HRI) inside
VRGym in Section 4, which incorporates direct human reactions
and involvements. Such capability is largely missing in the current
robotics simulators such as Gazebo or V-Rep. The benchmark in
Section 4 is also supported by this VRGym-ROS bridge.

Evaluation We evaluate the VRGym-ROS bridge on a nav-
igation task (see Figure 4) using a Clearpath Husky robot. This
navigation task is performed in VRGym, whereas the robot model
is imported from ROS, making it possible to evaluate a number of
SLAM algorithms and path planning approaches. In 6a, the mapping
result is obtained using the conventional GMapping package in ROS.
The red curve indicates the planned path, whereas the black curve is
the actual odometry of the Husky robot. 6b shows the user’s view
when the robot is moving. This VRGym-ROS bridge fills in the gap
between the diverse scenes in VRGym and the existing fine-tuned
algorithms provided in ROS.

Communication Bandwidth To evaluate the reliability and
efficiency of the VRGym-ROS bridge, we conduct an experiment by
sending packages with the size of 512Kb3.

4 EXPERIMENTS
In this section, we demonstrate the performance and capability of the
VRGym from four different perspectives4. Two human robot interac-
tion (HRI) applications are conducted, including a human intention
prediction task and a social interaction task. Like other testbeds, we
also benchmark the performance popular machine learning algo-
rithms (e.g., reinforcement learning and IRL) in the VRGym.

4.1 Experiment 1: Intention Prediction
Predicting human intention is difficult when training on a physical
robot since this task has very small error tolerance; wrong predic-
tions may endanger both the human and the robot. It is particularly

3See a detailed evaluation in supplementary.
4See a video demo at Vimeo.
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Figure 7: Intention predictions in a coffee-making task. (a) Grab a cup.
(b) Use the coffee machine. (c) Pour milk. (d) Add sugar. (Right) Visual-
ization of three intention prediction algorithms. Blue and Red: sampled
paths from the grammar model [21]. Green: straight-line distance. Yel-
low: prediction by shortest perpendicular distance (dashed lines) from
objects to the ray direction (solid arrow) based on avatar’s location.

interesting to study human intention prediction in VRGym, since this
problem involves complicated inference process that many types of
data can be useful: human trajectories, human poses, object positions,
object states, and first/third-person vision inputs, etc.. Predicting in-
tention is made possible in VRGym as our unique multi-sensor setup
reflects human poses, and the odometry data provided by the data
logging system indicates human’s trajectories.

In the experiment, we analyze different human intention predic-
tion algorithms to demonstrate the potential of VRGym as a testbed
for both physical and virtual AI agents. Additionally, we show the
unification of both the learning and the inference enabled by the
VRGym. 20 subjects are recruited. The virtual environment is set up
as a virtual kitchen, in which more than 20 objects are placed on top
of three long tables. The layout of the kitchen is shown in Figure 7,
where the agent starts from the entrance of the room (red dot) and
performs the task with at least 4 steps: grasp a mug, operate the
coffee maker, add milk, and add sugar. Note these tasks can perform
in different orders. The resulting footprint from one subject is plotted
in Figure 7. All subjects are required to perform a coffee-making
task—making a cup of coffee using the available objects.

Figure 7e illustrates the comparisons among these three meth-
ods. The qualitative results are shown in Figure 7a-d to reveal the
intention of the agent as the heat maps during the process of making
coffee, where hotter color (red) indicates higher probability. This
high-level semantic prediction is inferred given multiple human
demonstrations as logged navigation and grasp data collected from
the agent using VRGym.

4.2 Experiment 2: Social Interaction
Social interactions or social HRI is a vital topic enabling human-
robot co-existing environment, since the robot needs to understand
and respond properly to human’s social behaviors, such as wav-
ing and hand-shaking. Although the current robot simulators (e.g.,
Gazebo and V-Rep) provide a suite of features, one key element
these simulation platforms still largely missing is the direct human
involvement which is crucial for human-robot interaction studies.

Participants A total of 10 subjects were recruited. We imple-
mented the algorithm proposed in [25] for robot learning social
affordance. The algorithm is briefly described as follows; we refer
the readers to the original paper for more technical details.

Figure 8: Human robot interactions in VRGym. A Baxter robot (a)
waves hands and (b) shake hands with a virtual human agent.

Results Qualitative results are shown in Figure 8. Concretely,
the robot starts hand-waving in response to the agent’s hand waving
(Figure 8a), illustrated by a virtual hand model. The robot stretches
out its manipulator to make a handshake with the virtual agent
(Figure 8b). Technically, when the virtual Baxter inside the VRGym
perceives the action signals from a virtual human such as hand
shaking or hand stretching out, it sends the action signals to ROS
through the VRGym-ROS bridge. In ROS, the motion planning
will generate corresponding body parts transformations and send
the computed transformation data back to the virtual Baxter inside
VRGym, such that it will then act with the appropriate responses to
the virtual human agent. In this sense, the proposed VRGym enables
a new approach to study social human-robot interaction without
using a costly physical robot or having a physical contact between a
subject and robots, which in some cases could be dangerous.

4.3 Experiment 3: RL Algorithms Benchmark
We introduce a playground as a sub-module (Figure 9) inside the
VRGym, aiming to train robots to navigate in a 3D maze-like indoor
corridor. The overall goal is to teach the robot agent itself by trial
and error to obtain a navigation policy, reaching the final goal of
the maze. The learning strategy applied on the virtual robot follows
the standard RL framework. A Baxter robot is integrated into the
VRGym and controlled by off-the-shelf ROS packages.

Compared to other virtual playgrounds (e.g., OpenAI Gym), the
proposed VRGym differs in two primary aspects.
• Sophisticated Interactions. With the advanced physics-based sim-

ulator, the VRGym offers realistic interactions between the virtual
agent and the virtual environment.

Figure 9: Settings for the RL training inside VRGym environment for
an indoor maze navigation task. (a) First-person view of a virtual robot.
(b) The robot collides with a wall, triggering negative rewards. (c) An
eagle view of the indoor navigation task. (d) Rewards assigned in differ-
ent color zones (red, yellow, green and blue) from low to high. (e) The
performances of the tested RL algorithms.
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Figure 10: Learning human grasping demonstration with different IRL
frameworks.

• Physical RL Agent. Since the VRGym is capable of importing
both the physical and the virtual robot model to the virtual scene,
it is feasible to transfer RL model trained inside the virtual envi-
ronment directly to a physical robot agent.
We conduct four state-of-the-art deep RL algorithms to demon-

strate the VRGym’s capability in RL related tasks. These algo-
rithms are DDPG [14], DQN [18], Actor-Critic [17], and Dueling
DQN [30]. All four algorithms use the pixel-input from the first-
person camera view. The quantitative comparison of the above four
algorithms in VRGym is plotted in Figure 9e.

4.4 Experiment 4: IRL for Learning Grasp
Grasp is an imperative capability for an interactive agent. In this
experiment, we adopt an inverse reinforcement learning (IRL) frame-
work to enable a virtual robot learning to grasp from human demon-
strations. This task primarily involves both the data logging function
in VRGym and a ROS motion planer communicated by the VRGym-
ROS bridge. The robot is expected to learn how to successfully grasp
an unknown object based on the hand trajectories demonstrated by
the human subjects, collected through tele-operations using the Ocu-
lus Touch Controller inside the VRGym.

The trajectories of the human demonstrations are logged and used
to infer the model and its parameters. Later, with the learned model
and its parameters, the robot can be executed using the motion plan-
ner in ROS to grasp an unknown objects in the virtual environment.

Three IRL algorithms are implemented in the VRGym: Bayesian-
IRL [23], Maximum Entropy-IRL [33], and Semi-supervised-IRL [29].
Qualitative results are shown in Figure 10.

5 CONCLUSION
In this paper, we introduce the VRGym as a promising simulation
platform for training and evaluating autonomous agents to build the
physical and interactive AI. VRGym can represent a fine-grained
human embodiment as a virtual avatar using a range of hardware
setups for body and manipulation sensing. Existing robotics systems
and algorithms developed in ROS can also be integrated to VRGym
through a customized VRGym-ROS bridge. Multiple evaluations
indicate that the VRGym has a robust performance at the system
level and in the communication with ROS. Our experiments have
demonstrated that four different robotics interactive tasks can be
successfully trained using RL and IRL inside VRGym. Specifically,
we showcase how the data logged from the VRGym is useful in
several interaction tasks, combining with the functions (e.g., motion
planners, robot models) provided by ROS through the VRGym-ROS
bridge. The successful implements of RL and IRL for robotics inter-
active tasks in VRGym also support the training capability offered by
VRGym in training robots with advanced machine learning methods.

We believe VRGym could have further potential applications and it
will benefit future research on the physical and interactive AI.
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